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 If (a, m) = 1, then  (m)  a(m) = 1 mod m, (m) 
Z+. Thus by the well-order property,  a least 
positive integer x  ax = 1 mod m.

Def:
Let (a, m) = 1, 
the least positive integer x  ax = 1 mod m
is called the order of a modulo m, 
denoted by ordma .

9.1 The order of an integer and 
primitive root
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Thm: 
If(a, n)=1, then ax =1 mod n, iff (ordna)|x.

Proof:
→ If ordn a|x, then  k  z  x = kordna
∴ ax = (aordna)k = 1 mod n
← If ax = 1 mod n. Let x = q ordn a + r,
0  r < ordna . 
Thus, ∴ ax = ( a ordn a )qar = 1 mod n
∵ 0  r < ordna, and ordna is the least      
integer  aordna = 1 mod n
∴r = 0  ordna|x
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Corollary: 
If (a, m) = 1, then ordma|(m)

Proof: 
Following by Euler Theorem and above Theorem 
directly.

m = 11
(m) = 10 
1|(m), 2|(m)
5|(m),10|(m)

Reduced 
reside set

a
d1

d2

d4(m)

(m)
di|(m)

d3



9-6

Thm: 
If (a, n) = 1, then ai = aj mod n iff i = j mod (ordna)    

Proof: 
(→) If i = j mod (ordna), 

then ai = aj+kordna = aj mod n
(←) If ai = aj mod n. 

∵ ai = aj ai – j mod n  aj ai – j = aj mod n
∵ (a, n) = 1  (aj, n) = 1. 
Thus, by Cancellation of aj, we have ai – j = 1 mod n
 ordna |(i - j), thus, i = j mod (ordna) 
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Primitive roots
Def: 

If (r, n) = 1 and if ordnr = (n), 
then r is called a primitive root modulo n.

(m)

Reduced reside set
ai

a
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Question: 
1. For any given n, does a primitive root modulo n

exist?
2. If it exists, how to find one?
3. How to find all the primitive roots?
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Thm:
If (r, n) = 1 and r is a primitive root modulo n, then 
the set of integers S = {r1, r2, …, r(n) } 
form a reduced residue set modulo n.

Proof: 
We must show that 
(1) (ri, n) = 1, 1 i  (n)
(2) ri  rj mod n  i  j and 1  i  (n), 1  j  (n)
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(1) ∵ (r, n) = 1, ∴ (ri, n) = 1 for any i  Z+

(2) Assume that ri = rj mod n , then i = j mod (n),
however, for 1  i  (n) and 1  j  (n), it   
implied that i = j,
∴S is a reduced residue set modulo n.       



Thm: 
If ordma = t and if u  Z+, then ordm(au) = 

Proof: 
Let s = ordm(au), v = (t, u), t = t1v and u = u1v
then (t1, u1) = 1.
(1) ∵(au)t1 = (au1v)t/v = (at)u1 = (1)u1 = 1 mod m

∴ s = ordm(au)|t1
(2) ∵(au)s = aus = 1 mod m, ∴ t = ordma|us

 t1v |u1vs  t1|u1s
But (t1, u1) = 1  t1|s
∴s = ordm(au)= t1=      = 

(t, u)
t

(t, u)
t

v
t



9-12

Corollary: 
Let r be a primitive root modulo m. Then ru is a primitive 
root modulo m iff (u, (m)) = 1.

Proof: 
∵ ordmru =                =                =(m)

∴ ru is a primitive root modulo m iff (u, (m)) = 1.    
),( rordu

rord

m

m

))(,( mu
rordm
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Thm: 
If m  Z+ has a primitive root, then it has a total of 
((m)) incongruent roots.

Proof: 
Let r be a primitive root modulo m, then r1,r2,…,r(m)

form a reduced residue system modulo m.
However, ru is a primitive root iff (u, (m)) = 1. 
Since there are exactly ((m)) such u, 
there are exactly ((m)) primitive roots modulo m. 
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 Thus, if we can find a primitive root r modulo m, 
then we can generate all the primitive root modulo m 
by calculating ru mod m, where (u, (m)) = 1.

 If p = 2q +1, where p, q are primes.
  ((p)) = (2q) = q –1
  rates of primitive root:

.1 if ,
2
1

12
1



 q

q
q
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9.2 Primitive roots for primes
 Every prime has a primitive roots.
Def: 

Let f(x) be a polynomial with integer coefficients. 
An integer c is said to be a root of f(x) modulo m
if f(c) = 0 mod m.

Remark:
1. If c is a root of f(x) mod m, 

then u is also a root if u = c mod m.
2. h(x) = xp-1-1 has exactly p -1 incongruent roots   

modulo p, where p is prime, 
(i.e., x = 1, 2…, p -1 (mod p))
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Thm: Lagrange’s Theorem
Let f(x) = anxn + an-1xn-1 +…+ a1x + a0 be 
a polynomial of degree n, n  1, with ai  Z and p | an, 
then f(x) has at most n incongruent roots modulo p.

Proof: By mathematical induction.
When n = 1, then x=        is the only root

modulo p of f(x). Thus it is true for n = 1.
Suppose it is true for polynomials of degree n-1. 
Let f(x) be such a polynomial of degree n. 
Assume f(x) has n+1 incongruent roots modulo p, say 
c0,c1,…cn  f(ck) = 0 mod p for k = 0, 1, …, n. 

1

0

a
a
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We have f(x) - f(c0) = an(xn-co
n) +…+ a1(x- c0)

= (x- c0)g(x)
Where g(x) is a polynomial of degree n-1.
∵f(ck) - f(c0) = (ck- c0)g(ck) = 0 mod p and ck  c0 mod p
 g(ck) = 0.

∴ck is a root of g(x) mod p.
∴g(x) has n incongruence roots modulo p.
This contradicts the induction hypothesis.
Hence f(x) must have no more than n incongruent roots
modulo p. 
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Thm: 
Let p be prime and d∣p-1. Then the polynomial xd -1
has exactly d incongruent roots modulo p. 

Proof:
Let p -1 = de, then
xp-1 -1= (xd -1)(xd(e-1) + xd(e -2) +…+ xd+1 ) =(xd -1)g(x)
∵ xp-1-1 has p -1 incongruent roots modulo p and any 
root of xp -1 modulo p is either a root of xd -1 mod p or 
a root of g(x) modulo p.
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But g(x) has at most d(e -1) = de - d = p - d -1 roots 
modulo p.

∴ the polynomial xd -1 has at least  (p -1) - (p - d -1) = d
incongruent roots. On the other hand, xd -1 has at 
most d incongruent roots modulo p.

∴ xd -1 has exactly d incongruent roots modulo p. 
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Thm 9.8: 
Let p be a prime and let d  Z+ and d∣p -1. 
Then the number of incongruent integers of order d
modulo p is equal to (d).

Proof: 
Let F(d) denote the number of positive integers of  
order d modulo p that are less than p, 
then 

However, 





1

)(1
pd

dFp

.)()()(1
111





pdpdpd

dFddp 
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If we can prove that F(d)  (d).then we have F(d) = 
(d). Let d∣(p -1). If F(d) = 0, then F(d)  (d). 
Otherwise,  a  ordpa = d satisfying a1, a2, …, ad

are incongruent modulo p. 
And (ak )d mod p = 1 k Z+.
∵ xd -1 mod p has exactly d incongruent roots
modulo p, so every root modulo p is congruent to 
one of ai, 1 i  d.
But the power of a with order d are those of the form 
ak with (k, d) = 1  F(d)  (d)         
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Ex:
Let p = 11,
11 =1 mod p, 210 = 1, 35 = 1, 45 = 1, 55 = 1
610 =1, 710 =1, 810 = 1, 95 = 1, 102 = 1

111
1102
43, 4, 5, 95
42, 6, 7, 810

(d)order d modulo pd
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1
2,6,7,8

3,4,5,9

10

1

2

10

5

(p)=10
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Corollary :
Every prime of has a primitive root.

Proof: 
Let p be prime. From above theorem, there are (p -1) 
incongruent integers of order p -1 mod p.
∴ p has (p - 1) primitive roots.
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 Let r be a primitive root modulo n and 
the factors of (n) be d1, d2, …, dk.
Finding all primitive roots modulo n.

Sol: Find all integers s such that (s, (n)) = 1. 
Then all rs mod n are also primitive roots modulo n.

 mod n is an element whose order is d1.1

)(
d
n

r
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9.3 The existence of Primitive Roots
Object: 

To find all positive integers having primitive roots.
Thm:

If p is an odd prime with primitive root r, 
then either r or r + p is a primitive root modulo p2.

Proof: 
Since r is a primitive root modulo p  ordpr = (p) = p-1
Let nn = = ordordpp22rr , then rn = 1 mod p2  rn = 1 mod p.
∴p -1|n and n|(p2) = p(p -1) 
 n = p -1 or n = p(p -1)                                      (1)
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(1) If n = p(p -1), then r is a primitive root modulo p2.
(2) If n = p -1  rp-1 = 1 mod p2.

Let s= r + p. (Note s is also a  primitive root mod p)
Then sp-1= (r+p)p-1

= rp-1 + (p-1)rp-2p +          rp-3p2 +…+ pp -1

= rp-1 + (p-1)rp-2p mod p2

= 1+ (p-1)prp-2 mod p2

∵ prp-2  0 mod p2  sp-1  1 mod p2  ordp
2s  p -1

∴ ordp
2s = p(p -1) = (p2)

 s = r + p is a primitive root mod p2.                      








 
2

1p
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Ex: 
The prime p = 7 has r = 3 as a primitive root. 
From (1)  either ord493 = 6 or ord493 = 42.
∵36  1 mod 49  ord493 = 42 (= 76), 
 3 is a primitive root mod 49.

Note:
1. It is very seldom that a primitive root r modulo p

is not also a primitive root modulo p2.
2. If r is a primitive root modulo p2, and r < p, then 

r is also a primitive root modulo p.
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Thm: 
Let p be an odd prime. Then pk has a primitive root
for all kZ+. Moreover, if r is a primitive root modulo p2, 
then r is a primitive root modulo pk, 
for all positive integers k.

Ex: 
3 is a primitive root modulo 7 and 72.

∴3 is also a primitive root modulo 7k, k  Z+.
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Proof: Strategy: (pk ) = pk-1(p -1)

1. If r is a primitive root modulo p2, i.e. rp -1  1 mod p2.    

Show that                                              (1) 

(By mathematical induction)

2. Using mathematical induction, show that

)()1(ord 1 kk
p ppprk  

kpp pr
k

 mod 1)1(2
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(1)The case of k = 2 is true, since r is a primitive root 
modulo p2. Assume that it is true for k  2. Then              

∵(r, p)=1  (r, pk-1) = 1. ∴ from Euler’s Thm., 
we have                                      

=1+ dp k-1, where p∣d.
∴

mod pk+1

∵p∣d, ∴ mod pk+1

. mod 1)1(2 kpp pr
k



1)()1(  mod 1
12  

 kppp prr
kk 

  

)(1)1()( 11)1()1( 12 kpkppppp dppdprr
kk

kpkk dpdpdp
p









  1)(...)(

2
121

1)1(1

 ppk

r
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(2)Let                     , then n∣ (pk) = pk-1(p-1). However, 
since rn = 1 mod pk  rn =1 mod p  p-1∣n.
∴n = pt(p -1), where tz  0  t  k-1.
If 0  t  k-2, then
mod pk  mod pk, it would contradict (1)
∴
 r is also a primitive root modulo pk 

rn kpord

1)(
22 )1()1( 
  tktk ppppp rr

1)1(2

 ppk

r
)()1(ord 1 kk

p ppprn k  
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 How to find a primitive root modulo n?

Let                                  t11, 1  i  k.

1. Randomly choose an integer r, 1< r < n-1.

Check if                mod n, 1  i  k (1)

2. If (1) holds for all i, then r must be a primitive root      

modulo n. 

Ex. n=37, (n)=22 ×32, d=1,2,3,4,6,9,12,18.36

1
)(

ip
n

r


kt
k

tt pppn ...)( 21
21

補充
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n=37, (n)=22 ×32, d=1,2,3,4,6,9,12,18.36

If n = 2p + 1, a(mod n1) = a(mod n2)
If n2∣n1 and (a mod n1) < n2.
A=kn1 + b, 7 mod 4  7 mod 2

2
1

2
1

2
)2(

)(
))((





p

p
p
p

n
n 




18
2

)(


n 12
3

)(


n

補充

?
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Thm: If a is an odd integer and if k Z+ , k  3, then 

Proof: 

By using mathematical induction. 
If a is an odd integer, then a = 2b + 1, b  Z+  {0}
∴a2 = (2b + 1)2 = 4b2 + 4b + 1 = 4b(b +1) + 1

Since either b or b+1 is even  8∣4b(b + 1)

 a2 = 1 mod 8   ∴ It is true when k = 3.
Assume that         = 1 mod 2k, then                                   

kk

k

aa 2  mod  1
222

)2(






22 k

a
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Remark:
1.From this theorem we know that no power of 2, 
other than 2 and 4, has a primitive root.

2.The largest possible order modulo 2k, k3, is 

kdazd
k

21
22 



kk ddaa
kk 221222 221)(

21

 

12 2  mod  1
1 

 kk

a

.2
2

)2( 2 k
k
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Thm: 
Let k  3, then            

Proof:
Since                           (from above theorem), if we

can prove that            | 2k-3,
i.e,                           ,then
By mathematical induction, for k = 3,
5 = 1 + 4 mod 8 

= 1 + 2k-1  mod 2k  1 mod 2k.

.2
2

)2(5ord 2
2

 k
k

k



kk

2 mod 15
22 



kk

2 mod 15
32 

 .25ord 2
2

 k
k

5ord2k
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Assume that                                  ,
then  dZ+   



Thm: 
If n  Z+ and n  pt or n  2pt, where p is an odd   
prime, then n does not have a primitive root. 

kkk

2mod215 12 3 


kk d
k

2215 12 3

 

2
2

12221

21212

2
2

)2(5ord

2 mod 121221)21(          
)2(2)21(2)21(5

2














k
k

kkkkk

kkkk

k

k

dd
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Proof:
Let n  Z+ and
Assume that n has a primitive root r, then 

(r, n)=1 and ordnr = (n). 
∵(r, n) = 1 
By Euler’s theorem, we have
Let                                                     then

∴By CRT, we have ru = 1 mod n  ordnr = (n)  u.
∵ (n) is multiplicative 

.21
21

mt
m

tt pppn 

.1,1),( mipr it
i 

.,mod1)( ipr iit
i t

i
p 

),(,),(),((lcm 21
21

mt
m

tt pppu  
mipr it

i
u  ,2,1,  mod  1

)()( 21
21

mt
m

tt pppn  
)()( 1

1
mt

m
t pp  
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However , it is only possible for that 
are pairwise relative prime.

is even if p is odd, 
or if pi = 2 and ti 2.

are not paitwise relatively 
prime unless m = 1 and n = pt or m = 2 and n = 2pt, 
where p is an odd prime and t is positive integer.   

           1 2 1 2
1 2 1 2( ) ( ) ( ) lcm( ( ), ( ) ( ))m mt t t t t t

m mp p p p p p

)(,),(),( 21
21

mt
m

tt ppp  

)1()(  i
t

i
t

i ppp ii

)(,),(),( 21
21

mt
m

tt ppp  
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Thm:
If p is an odd prime and t Z+, then 2pt possesses a 
primitive root. Let r be a primitive root modulo pt.
(i) If r is odd, then r is also a primitive root modulo 2pt.
(ii) If r is even, then r + pt is a primitive root modulo 2pt.

Proof: 
If r is a primitive root modulo pt, then 

 no a < (pt)  ra =1 mod pt

∴ (2pt) = (2) (pt) = (pt)  mod pt (1)

tp pr
t

 mod 1)( 

1)2( 
tpr 
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(i) If r is odd, then                                     (2)
is a primitive root modulo 2pt

(ii)If r is even , then r + pt is odd.

 r + pt is a primitive root modulo 2pt.                

Thm:
The positive integer n, n > 1, 
possesses a primitive root iff n = 2, 4, pt or 2pt, 
where p is an odd prime and t  Z+. 

2  mod  1)2( 
tpr 

rpr tpt

 2  mod  1)2(











2 mod 1)( and

 mod 1)()(
)2(

)()2(

t

tt

pt

tptpt

pr

pprpr
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9.4 Index Arithmetic
 Let r be a primitive root modulo m, m Z+, then

S = {r, r2,…, r(m)} 
is a reduced system of residues modulo m.

If a  S, then  a unique integer x with 1  x  (m) 
rx = a mod m.

Def:
Let m be a positive integer with primitive root r. 
If a  Z+ with (a, m) = 1, 
then the unique integer x with 1  x  (m) and rx = a mod m

is called the index of a to the base r modulo m. 
We write x = indra (assume m is fixed) and 

 ind mod   r aa r m
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Property:
If a = b mod m and (a, m) = (b, m) =1, 
then indra = indrb

r

a1
a2

a(m)

r1 (ind ra1
= 1)

r2 (indra2 = 2)

r(m) (indra(m) = (m))
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Thm:
Let m  Z+ with primitive root r, and a, b be integers  
relatively prime to m. Then
(i) indr1= 0 mod (m).
(ii) indr(ab) = indra + indrb mod (m)
(iii) indrak = kindra mod (m) if k  Z+
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Proof: (i) ∵r(m) = 1 mod m  indr1 = (m) = 0 mod (m)
(ii)                                     

(iii)                                      

Ex: Solve 6x12 =11 mod 17
Sol: 

(1)Find that 3 is a primitive root of 17. Form table 1, we 
have ind3(6x12) = ind311 = 7 mod 16



   
 





 ind

ind ind ind i

)

n

(

d

(1)  mod and
(2)  mod 
ind ind in ((

  
d)

 

) 
 

 mod

r

r r r r

ab

a b

r r

b

r

a

ab
ab

ab a

r
m

b
r r

m

m
r


 

  
 ind ind mod  and ( )  m

ind i
od  

 mod n )d (

r r
k k k ka

r

a

k
r

a a
aka

mrm
m

r
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Using (ii) and (iii), we have 
ind3(6x12) = ind36 + 12ind3x mod 16
 7 = 15 + 12ind3x mod 16
 12ind3x = 8 mod 16 
 ind3x = 2 mod 4
 ind3x = 2, 6, 10 or 14 mod 16
∴x=32=9, or x=36=15, or x=310=8, or x=314=2

Table 1.indices to the base 3 modulo 17

86941373210111551211416ind3a

16151413121110987654321a
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Ex:
Use table 1 to find all solutions of  7x = 6 mod 17

Sol:
ind3(7x) = ind36 = 15 mod 16  From (iii), we have 
ind3(7x) = xind37 =11x mod 16 = 15 mod 16
∵11-1 = 3 mod 16  ∴ x = 13 mod 16

Def: 
If m and kZ+ and (a, m) = 1. We say that 
a is a kth power residue of m
if 

xk = a mod m
has a solution.
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Thm:
Let m Z+ and r be a primitive root modulo m. 
If k  Z+ and (a, m) = 1, then xk = a mod m has a 
solution iff

where d = (k, (m)).
Furthermore, if there are solutions of xk = a mod m, 
then there are exactly d incongruent solutions
modulo m.




( )

1 mod 
m
da m
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Proof:





  
  

 






 mod  has holds iff mod  (1)
Let ( , ) and mod .
Then  mod  (2) has no solution if .
Hence there are no soluti

( )
( )

( )
ons of  mod  if .

ind ind
ind

in |
|

d ind
ind

I

 
 r r

r

r
k

r

k

r

y
x m x

xd
k m

k m y
k

a a

y
x m

a
r

d
dax

m a
am



 





 
( )

|
(

ind

ind i

f , then there are exactly solutions (1) holds.

Since  iff  mod 

and this congruence holds iff   mod .           

n)| 0 ( )

 

 

d

 1
m

r

r r

d

d d

d
d

ma

mam
a

a

       
( ) ( )

ind i( ) 0 ( ) 0 ( ) 1(  mod  mon d  mod .)d
m
d d

r r

m

a am m a m
d
m
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Ex: Determine whether 5 is a sixth power residue of  17
(i.e., whether x6 = 5 mod 17 has a solution.)

Sol:

Thm*:

    



16
8( , 6 16)( ,  )  2 and 1 mod 17  mod 17

5 is not a sixth power residue o
6 16 15 5

f 17.



  

If  is an  positive integer,then 

 passes  for at most 

odd com
1Miller's test

4
  bases 

1

p

w

ositive

ith 1 .

n

b n

n

n b
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Lemma: 
Let p be an odd prime and let e, q Z+. Then the number 
of incongruent solutions of 

xq = 1 mod pe

is (q, pe-1(p -1)).
Proof: 

Let r be a primitive root of pe,then xq = 1 mod pe iff qy
= 0 mod (pe), where y = indrx. ∵ There are exactly (q, 
(pe)) incongruent solutions of qy = 0 mod (pe)  there 
are  (q, (pe)) = (q, pe-1(p -1)) incongruent solutions of xq

= 1 mod pe.
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Proof of Thm*:
Let n -1 = 2s t,s z+ and t is odd and t z+.
For n to be a strong pseudo prime to be base b, 
either bt = 1 mod n or                          for some 0  j 
s-1. In either case, bn-1=1 mod n.
If           , then                                        (page 195)
Let                                 
∵there are 

incongruent solutions of   
xn-1 = 1 mod 

∴By CRT, there are exactly                      
incongruent solutions of xn-1 = 1 mod n.

nb tj

  mod12 

np je
j ).1,1())(,1(  j

t
j pnpn j

.21
21

re
r

ee pppn 
)1,1())1(,1( 1  

jj
e

j pnppn j

.,,2,1, rjp je
j 





r

j
jpn

1

)1,1(
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for

∴ there are at most            integers b, 1  b  n, for 
which n is a strong  pseudo prime to be base b.

(2)For n = p1p2…pr, where p1, p2,…, pr are distinct odd 
primes. Let                    , i =1, 2,…, r,  si, ti z+ and ti is 
odd. Reorder the primes p1,p2,…pr (if necessary) so 
that s1  s2  …  sr. Note that (n-1, pi-1)=

  
  


r

j

r

j

r

j

e
kjjj nppppn k

1 1 1 9
2)

9
2()1()1,1(

)1(
4
1

9
2

 nn )1(
4
1)

9
2(.

1

 


npppn ke
k

r

j
j

4
1n

i
s

i tp i21

),(2 ),min(
i

ss tti

 



     

1

1 1 1 21 For , 2, ,( 3, 2)
9

k

k k k

e k
k k k ke e e

k k k

pp e p e
p p p
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The number of solutions of xt = 1 mod pi is Ti=(t,ti). 
There are 2jti solutions of 
0  j  si-1, and no solutions otherwise. ∴ By 
CRT, there are T1T2…Tr solutions of xt =1 mod n, and 
2jrT1T2…Tr solutions of                           , 0  j  si-1.

∴there are a total of

Integer b, 1  b  n -1, for which n is a strong pseudo  
prime to the base b.
Note that (n) = (p1-1)(p2-1)…(pr-1) =

,mod12
i

t px
j



nx tj

mod12 
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We want to show that 

if r3.

When r = 2, n = p1p2 with                   
and 

If s1= s2, then 
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If s1 = s2, then (n-1, p1-1) = 2sT1, and (n-1, p2-1) = 2sT2. 
Let note that T1  t1, for if T1= t1 then  (p1-1)∣(n-1), so 
that n = p1p2 = p2 = 1 mod p1-1 which implies p2 > p1.
∵ T1  t2
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Remark: 
The prob. that n is a strong pseudo prime

to the random chosen base b, 1  b  n-1, 
is close to ¼ only for integers n with prime factor is of 
the form 

n = p1p2

with p1=1+ 2q1 and p2 = 1+ 4q2

where q1,q2 are odd primes, or 
n = p1p2p3

with p1 = 1 + 2q1, p2 = 1+2q2 and p3 = 1+ 2q3, 
where q1, q2, q3 are distinct odd primes.
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9.5 Primary Test using primitive roots
From Thm, we know that n  Z+, n > 1, processes a

primitive root iff n =2, 4, pt, or 2pt, where p is an odd 
prime and t  Z+. 

Thus, if n  Z+ and is odd and 
if  x Z+  x is a primitive root satisfying 

xn-1 = 1 mod n, 
then n is prime.

Note: If n = pt > 1, then x(n) = 1 mod n, where
(n) = pt-1(p-1)  n-1.
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Thm:
If n  Z+ and if  x  Z+ 

xn-1 = 1 mod n
and 

x(n-1)/q  1 mod n
for all prime divisors q of n - 1, then n is prime. 
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Proof:
xn-1=1 mod n,  ordnx|(n-1). If ordnx  n-1, then 
 k n -1= k．ordnx, then

Where q is a prime divisor of k. However, this 
contradicts the hypothese of the theorem 
∴ordnx = n -1, ordnx n-1, we conclude that (n) 
= n -1n is prime.

 


  
ord1 ord 1 mod  

kk xn n qq q n xx x x n

 

  
1

1 mod  , 1
n

qx n q n
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Corollary:
If n  odd positive integer and if x  Z+ 

x(n-1)/2 = -1 mod n
and 

x(n-1)/q  1 mod n
for all prime divisors q of n - 1, then n is prime. 
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This primality test is a deterministic test and is    
presented by Lucus.

1. In order to use this primality test, it needs to 
factor n-1 in advance. If n-1 cannot be factored, then 
the method is infeasible.

2. This test is very useful for test the primality of Fermat 
numbers.
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Thm: 
If n is composite, this can be proved with O((log2n)2) 
bit operations. 
(When the appropriate information is know ). 

Proof: 
If n is composite , then  a and b with 1< a <n , 1< b 
<n and n = ab . Taking O((log2n)2) bit operations to 
proof that n is composite.
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Thm : 
If n is prime, this can be proven using O((log2n)4) bit  
operations. 
(When the appropriate information is known)

Proof : 
Let f(n) be the total number of multiplications and 
modular exponentiations need to verify that the integer 
n is prime. 
We want to show that                              (1)     
f(2)=1 (1) is true .
Assume that for all primes q , q < n the 

inequality                             is true .     

  2
2log

log3 









nnf

  2
2log

log3 









nqf
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If  n is prime , then  2nq1…….qt and x satisfy
i. n -1= 2aq1……qt  t multiplications.
ii. qi is prime 1 i  t  f(qi), 1 i  t

iii. exponentiations

iv. exponentiations

1 moddular exponentiation requires O((log2n)3)
∴Total number of bit operations needed is O((log2n)4).

1mod12
1




nx
n

tinx jq
n




1,mod1
1

2log3

2
2log

log32
2log

log312)()1()(
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11
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Remark :
1. Above theorem cannot be used to find this short proof 

of primality, since the 
factorization of n -1

and 
the primitive root x of n

are required. 

2.
2 2 2log log log

2(log )
An efficient primality test requires fewer than 

bit operations, where  is a constant.c n cn
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9.6 Universal Exponents
Def: 

A universal exponent of positive integer n is a 
positive U such that  

aU = 1 mod n, 
for all integers a relatively prime to n. 

Remark:
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Problem :
1. Given n, what is the least universal exponent of n?
2. How to find a 

ordna = (n), 
where (n) is the least universal exponent
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Def : 
The least universal exponent of the positive integer n is 
called the minimal universal exponent of n, 
and is denoted by (n). 

Remark :
1. If n has a primitive root , then (n) = (n).

(a) n = pt, then ( pt ) = ( pt )=pt-1( p-1), where p is 
odd prime and t Z+.

(b) n = 2, then (2) = (2) = 1.
(c) n = 4, then (4) = (4) =2.
(d) n = 2pt , then (2pt) = (2pt) = pt-1(p-1).
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Remark :
1. If n has a primitive root, then (n) = (n).

(a) n = pt, then (pt) = (pt) = pt-1(p-1), 
where p is odd prime and t Z+.

(b) n = 2, then (2) = (2) = 1.
(c) n = 4, then (4) = (4) = 2.
(d) n = 2pt, then (2pt) = (2pt) = pt-1(p-1).
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Note: A carmichael number  is a composite integer 
         that satisfies 
                             1 mod , 
          for  , and , 1.
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We have proved that if ... ,
where ...  are distinct primes satisfying 
          ( 1) | ( 1), 1 , 

then  is a Carmichael number in Thm5.7 (p.195). 
Here ,we prove the converse of the res

k

k

j

n q q q
q q q
q n j k

n
ult.



9-75

 

 

   

  

1

1

2Thm : If 2 is a Carmichael number, then , where the 
          are distinct primes ( 1) | ( 1) for all 1,2,...,
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1 2

three different 
          odd prime

      is impossible | .
(3) If ... ,where  are distinct primes , 1 ,

     then 1 | 1 .

Thm : A Carmichael number must have at least 
 . factors

k j

j j j

p n
n q q q q s j k

q q q n n

   


       

 

 
Proof : Let  be a Carmichael number . Since  is the product 
            of distinct primes .Let  ,where  and  are odd 
            primes with ,  then 1 1 1 1

            1 0mod

n n
n pq p q

p q n pq p q q

q - p       1. 1 | 1 ,  it is impossible , 
             cannot be a Carmichael number.

p n
n


