

Chapter 9 Primitive Roots

Contents

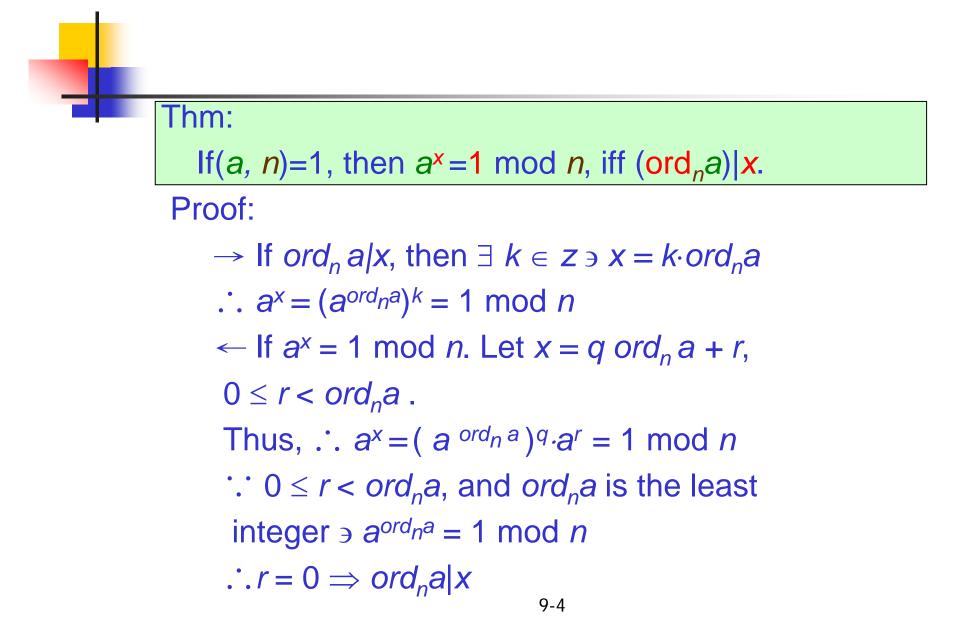
9.1	The order of an integer and primitive roots	3
9.2	Primitive roots for primes	15
9.3	Existence of primitive roots	26
9.4	Index arithmetic	41
9.5	Primality testing using primitive roots	56
9.6	Universal exponents	64

9.1 The order of an integer and primitive root

If (a, m) = 1, then ∃ $\phi(m) \ni a^{\phi(m)} = 1 \mod m$, $\phi(m) \in Z^+$. Thus by the well-order property, ∃ a least positive integer $x \ni a^x = 1 \mod m$.

Def:

```
Let (a, m) = 1,
the least positive integer x \ni a^x = 1 \mod m
is called the order of a modulo m,
denoted by \operatorname{ord}_m a.
```

Corollary:

If (a, m) = 1, then $\operatorname{ord}_m a | \phi(m)$

Proof:

Following by Euler Theorem and above Theorem directly.

Reduced areside set $\phi(m)$ d_1 d_2 d_3 d_4 $d_i | \phi(m)$

m = 11 $\phi(m) = 10$ $1|\phi(m), 2|\phi(m)$ $5|\phi(m), 10|\phi(m)$

Thm:

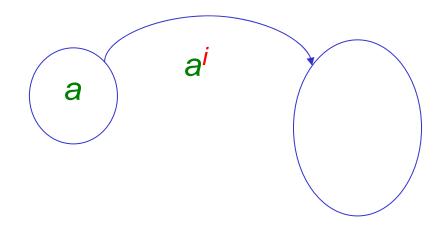
If (a, n) = 1, then $a^i = a^j \mod n$ iff $i = j \mod (\operatorname{ord}_n a)$ Proof:

(→) If $i = j \mod (\operatorname{ord}_n a)$, then $a^i = a^{j+k \cdot \operatorname{ord}_n a} = a^j \mod n$ (←) If $a^i = a^j \mod n$. $\therefore a^i = a^j \cdot a^{i-j} \mod n \Rightarrow a^j \cdot a^{i-j} = a^j \mod n$ $\therefore (a, n) = 1 \Rightarrow (a^j, n) = 1$. Thus, by Cancellation of a^j , we have $a^{i-j} = 1 \mod n$ $\Rightarrow \operatorname{ord}_n a | (i - j)$, thus, $i = j \mod (\operatorname{ord}_n a)$

Primitive roots

Def:

If (r, n) = 1 and if $\operatorname{ord}_n r = \phi(n)$, then *r* is called a primitive root modulo *n*.



Reduced reside set

(m)

Question:

- 1. For any given *n*, does a primitive root modulo *n* exist?
- 2. If it exists, how to find one?
- 3. How to find all the primitive roots?

Thm:

If (r, n) = 1 and *r* is a primitive root modulo *n*, then the set of integers $S = \{r^1, r^2, ..., r^{\phi(n)}\}$ form a reduced residue set modulo *n*.

Proof:

We must show that

(1) $(r^{i}, n) = 1, \forall 1 \le i \le \phi(n)$

(2) $r^i \neq r^j \mod n \forall i \neq j \text{ and } 1 \leq i \leq \phi(n), 1 \leq j \leq \phi(n)$

(1) \therefore (r, n) = 1, \therefore $(r^{i}, n) = 1$ for any $i \in Z^{+}$ (2) Assume that $r^{i} = r^{j} \mod n$, then $i = j \mod \phi(n)$, however, for $1 \le i \le \phi(n)$ and $1 \le j \le \phi(n)$, it implied that i = j, \therefore S is a reduced residue set modulo n.

Thm: If $\operatorname{ord}_m a = t$ and if $u \in Z^+$, then $\operatorname{ord}_m(a^u) = \frac{t}{(t, u)}$

Proof:

Let $s = \operatorname{ord}_{m}(a^{u}), v = (t, u), t = t_{1}v \text{ and } u = u_{1}v$ then $(t_{1}, u_{1}) = 1$. (1) $\therefore (a^{u})^{t_{1}} = (a^{u_{1}v})^{t/v} = (a^{t})^{u_{1}} = (1)^{u_{1}} = 1 \mod m$ $\therefore s = \operatorname{ord}_{m}(a^{u})|t_{1}$ (2) $\therefore (a^{u})^{s} = a^{us} = 1 \mod m, \therefore t = \operatorname{ord}_{m}a|us$ $\Rightarrow t_{1}v|u_{1}vs \Rightarrow t_{1}|u_{1}s$ But $(t_{1}, u_{1}) = 1 \Rightarrow t_{1}|s$ $\therefore s = \operatorname{ord}_{m}(a^{u}) = t_{1} = \frac{t}{v} = \frac{t}{(t, u)}$

Corollary:

Let *r* be a primitive root modulo *m*. Then r^u is a primitive root modulo *m* iff $(u, \phi(m)) = 1$.

Proof:

$$r : \operatorname{ord}_{m} r^{u} = \frac{\operatorname{ord}_{m} r}{(u, \operatorname{ord}_{m} r)} = \frac{\operatorname{ord}_{m} r}{(u, \phi(m))} = \phi(m)$$

 \therefore r^u is a primitive root modulo m iff $(u, \phi(m)) = 1$.

Thm:

If $m \in Z^+$ has a primitive root, then it has a total of $\phi(\phi(m))$ incongruent roots.

Proof:

Let *r* be a primitive root modulo *m*, then $r^1, r^2, ..., r^{\phi(m)}$ form a reduced residue system modulo *m*.

However, r^u is a primitive root iff $(u, \phi(m)) = 1$. Since there are exactly $\phi(\phi(m))$ such u, there are exactly $\phi(\phi(m))$ primitive roots modulo m.

- Thus, if we can find a primitive root *r* modulo *m*, then we can generate all the primitive root modulo *m* by calculating $r^u \mod m$, where $(u, \phi(m)) = 1$.
- If p = 2q + 1, where p, q are primes. $\Rightarrow \phi(\phi(p)) = \phi(2q) = q - 1$ \Rightarrow rates of primitive root: $\frac{q-1}{2q+1} \approx \frac{1}{2}$, if q >> 1.

9.2 Primitive roots for primes

Every prime has a primitive roots.

Def:

Let f(x) be a polynomial with integer coefficients. An integer c is said to be a root of f(x) modulo m if $f(c) = 0 \mod m$.

Remark:

- 1. If c is a root of $f(x) \mod m$, then u is also a root if $u = c \mod m$.
- 2. $h(x) = x^{p-1}-1$ has exactly p-1 incongruent roots modulo p, where p is prime,

(i.e., $x = 1, 2..., p - 1 \pmod{p}$)

Thm: Lagrange's Theorem

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ be a polynomial of degree $n, n \ge 1$, with $a_i \in Z$ and $p \nmid a_n$, then f(x) has at most n incongruent roots modulo p.

Proof: By mathematical induction.

When n = 1, then $x = -\frac{a_0}{a_1}$ is the only root modulo p of f(x). Thus it is true for n = 1.

Suppose it is true for polynomials of degree *n*-1. Let f(x) be such a polynomial of degree *n*. Assume f(x) has *n*+1 incongruent roots modulo *p*, say $C_0, C_1, \dots, C_n \ni f(C_k) = 0 \mod p$ for $k = 0, 1, \dots, n$.

We have
$$f(x) - f(c_0) = a_n(x^n - c_0^n) + ... + a_1(x - c_0)$$

= $(x - c_0)g(x)$

Where g(x) is a polynomial of degree n-1.

 $\therefore f(c_k) - f(c_0) = (c_k - c_0)g(c_k) = 0 \mod p \text{ and } c_k \neq c_0 \mod p$ $\Rightarrow g(c_k) = 0.$

 $\therefore c_k$ is a root of $g(x) \mod p$.

 $\therefore g(x)$ has *n* incongruence roots modulo *p*.

This contradicts the induction hypothesis.

Hence f(x) must have no more than *n* incongruent roots modulo *p*.

Thm:

Let *p* be prime and $d \mid p-1$. Then the polynomial $x^d - 1$ has exactly *d* incongruent roots modulo *p*.

Proof:

Let p - 1 = de, then $x^{p-1} - 1 = (x^d - 1)(x^{d(e-1)} + x^{d(e-2)} + ... + x^d + 1) = (x^d - 1)g(x)$ $\therefore x^{p-1} - 1$ has p - 1 incongruent roots modulo p and any root of $x^p - 1$ modulo p is either a root of $x^d - 1$ mod p or a root of g(x) modulo p.

But g(x) has at most d(e-1) = de - d = p - d - 1 roots modulo p.

- ... the polynomial x^d -1 has at least (p-1) (p d 1) = dincongruent roots. On the other hand, x^d -1 has at most *d* incongruent roots modulo *p*.
- $\therefore x^d$ -1 has exactly *d* incongruent roots modulo *p*.

Thm 9.8:

Let *p* be a prime and let $d \in Z^+$ and $d \mid p-1$. Then the number of incongruent integers of order *d* modulo *p* is equal to $\phi(d)$.

Proof:

Let F(d) denote the number of positive integers of order *d* modulo *p* that are less than *p*,

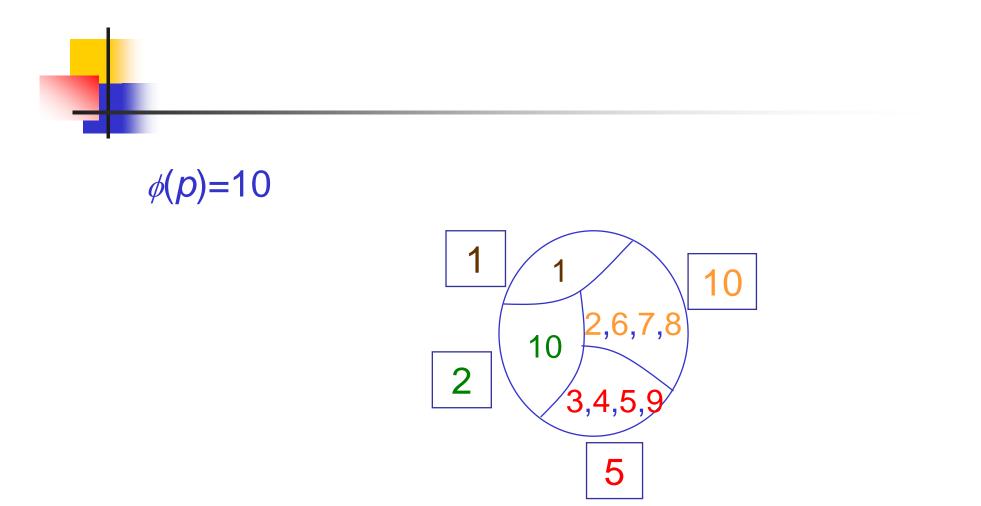
then $p-1 = \sum_{d|p-1} F(d)$ However, $p-1 = \sum_{d|p-1} \phi(d) \Rightarrow \sum_{d|p-1} \phi(d) = \sum_{d|p-1} F(d).$

If we can prove that $F(d) \le \phi(d)$.then we have $F(d) = \phi(d)$. Let $d \mid (p-1)$. If F(d) = 0, then $F(d) \le \phi(d)$. Otherwise, $\exists a \ni \operatorname{ord}_p a = d$ satisfying a^1, a^2, \ldots, a^d are incongruent modulo p. And $(a^k)^d \mod p = 1 \ \forall k \in Z^+$.

∴ x^d -1 mod p has exactly d incongruent roots modulo p, so every root modulo p is congruent to one of a^i , $1 \le i \le d$.

But the power of a with order *d* are those of the form a^k with $(k, d) = 1 \Rightarrow F(d) \le \phi(d)$

Ex					
1	$_et p =$	11,			
$1^{1} = 1 \mod p$, $2^{10} = 1$, $3^{5} = 1$, $4^{5} = 1$, $5^{5} = 1$					
$6^{10} = 1, 7^{10} = 1, 8^{10} = 1, 9^5 = 1, 10^2 = 1$					
	d	order <i>d</i> modulo <i>p</i>	<i>ф</i> (<i>d</i>)		
	10	2, 6, 7, 8	4		
	5	3, 4, 5, 9	4		
	2	10	1		
	1	1	1		
				-	



Corollary :

Every prime of has a primitive root.

Proof:

Let *p* be prime. From above theorem, there are $\phi(p-1)$ incongruent integers of order *p*-1 mod *p*.

 \therefore *p* has $\phi(p - 1)$ primitive roots.

Let r be a primitive root modulo n and the factors of $\phi(n)$ be d_1, d_2, \ldots, d_k . Finding all primitive roots modulo *n*.

Sol: Find all integers s such that $(s, \phi(n)) = 1$. Then all *r*^s mod *n* are also primitive roots modulo *n*.

• $r^{\frac{\phi(n)}{d_1}} \mod n$ is an element whose order is d_1 .

9.3 The existence of Primitive Roots

Object:

To find all positive integers having primitive roots.

Thm:

If *p* is an odd prime with primitive root *r*, then either *r* or r + p is a primitive root modulo p^2 .

Proof:

Since *r* is a primitive root modulo $p \Rightarrow \operatorname{ord}_p r = \phi(p) = p-1$ Let $n = \operatorname{ord}_{p^2} r$, then $r^n = 1 \mod p^2 \Rightarrow r^n = 1 \mod p$. $\therefore p - 1 | n \text{ and } n | \phi(p^2) = p(p - 1)$ $\Rightarrow n = p - 1 \text{ or } n = p(p - 1)$ (1)

(1) If n = p(p-1), then r is a primitive root modulo p^2 . (2) If $n = p - 1 \implies r^{p-1} = 1 \mod p^2$. Let s = r + p. (Note s is also a primitive root mod p) Then $s^{p-1} = (r+p)^{p-1}$ $= r^{p-1} + (p-1)r^{p-2}p + {p-1 \choose 2}r^{p-3}p^2 + \dots + p^{p-1}$ $= r^{p-1} + (p-1)r^{p-2}p \mod p^2$ $= 1 + (p-1)pr^{p-2} \mod p^2$ $\therefore pr^{p-2} \neq 0 \mod p^2 \Rightarrow s^{p-1} \neq 1 \mod p^2 \Rightarrow \operatorname{ord}_p^2 s \neq p-1$:. $\operatorname{ord}_{p}^{2}s = p(p-1) = \phi(p^{2})$ \Rightarrow s = r + p is a primitive root mod p².

Ex: The prime p = 7 has r = 3 as a primitive root. From (1) \Rightarrow either $\operatorname{ord}_{49}3 = 6$ or $\operatorname{ord}_{49}3 = 42$. $\therefore 3^6 \neq 1 \mod 49 \Rightarrow \operatorname{ord}_{49}3 = 42 (= 7 \times 6)$,

 \Rightarrow 3 is a primitive root mod 49.

Note:

- 1. It is very seldom that a primitive root r modulo p is not also a primitive root modulo p^2 .
- If *r* is a primitive root modulo *p*², and *r* < *p*, then *r* is also a primitive root modulo *p*.

Thm:

Let *p* be an odd prime. Then p^k has a primitive root for all $k \in Z^+$. Moreover, if *r* is a primitive root modulo p^2 , then *r* is a primitive root modulo p^k , for all positive integers *k*.

Ex:

3 is a primitive root modulo 7 and 7^2 .

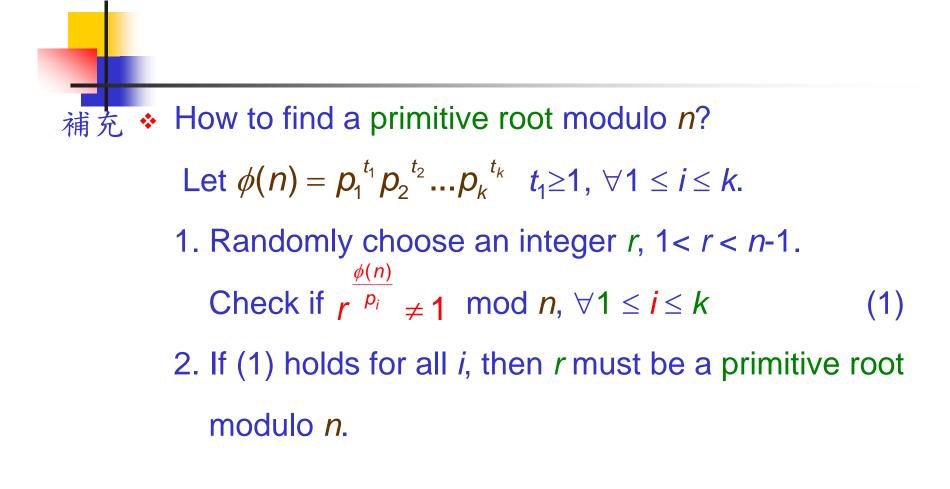
∴3 is also a primitive root modulo 7^k , $\forall k \in Z^+$.

Proof: Strategy: $\phi(p^k) = p^{k-1}(p-1)$ 1. If *r* is a primitive root modulo p^2 , i.e. $r^{p-1} \neq 1 \mod p^2$. Show that $r^{p^{k-2}(p-1)} \neq 1 \mod p^k$ (1) (By mathematical induction) 2. Using mathematical induction, show that

$$\operatorname{ord}_{p^{k}} r = p^{k-1}(p-1) = \phi(p^{k})$$

(1)The case of k = 2 is true, since r is a primitive root modulo p^2 . Assume that it is true for $k \ge 2$. Then $r^{p^{k-2}(p-1)} \neq 1 \mod p^k$. $(r, p) = 1 \implies (r, p^{k-1}) = 1$. (r, p) = 1. (r, p) = 1. (r, p) = 1. (r, p) = 1we have $r^{p^{k-2}(p-1)} = r^{\phi(p^{k-1})} = 1 \mod p^{k-1}$ =1+ dp^{k-1} , where $p \neq d$. $\cdot \cdot (r^{p^{k-2}(p-1)})^{p} = r^{p^{k-1}(p-1)} = (1 + dp^{k-1})^{p} = 1 + p(dp^{k-1}) + p(dp^{k-1}$ + $\binom{p}{2}(dp^{k-1})^2$ + ... + $(dp^{k-1})^p$ = 1 + $dp^k \mod p^{k+1}$ $\therefore p \mid d, \therefore r^{p^{k-1}(p-1)} \neq 1 \mod p^{k+1}$

(2)Let $n = \operatorname{ord}_{p^k} r$, then $n \mid \phi(p^k) = p^{k-1}(p-1)$. However, since $r^n = 1 \mod p^k \Rightarrow r^n = 1 \mod p \Rightarrow p-1 \mid n$. $\therefore n = p^t(p-1)$, where $t \in z \Rightarrow 0 \le t \le k-1$. If $0 \le t \le k-2$, then $r^{p^{k-2}(p-1)} = (r^{p^t(p-1)})^{p^{k-2-t}} = 1$ $\mod p^k \Rightarrow r^{p^{k-2}(p-1)} = 1 \mod p^k$, it would contradict (1) $\therefore n = \operatorname{ord}_{p^k} r = p^{k-1}(p-1) = \phi(p^k)$ $\Rightarrow r$ is also a primitive root modulo p^k



Ex. n=37, $\phi(n)=2^2\times 3^2$, d=1,2,3,4,6,9,12,18.36

補充 n=37,
$$\phi(n)=2^2 \times 3^2$$
, d=1,2,3,4,6,9,12,18.36
 $\frac{\phi(n)}{2}=18$ $\frac{\phi(n)}{3}=12$ $\frac{\phi(\phi(n))}{\phi(n)}=\frac{\phi(2p)}{2p}=\frac{p-1}{2p}\approx\frac{1}{2}$
? If $n=2p+1$, $a(\text{mod } n_1)=a(\text{mod } n_2)$

If $n_2 \mid n_1$ and $(a \mod n_1) \le a(1100)$ If $n_2 \mid n_1$ and $(a \mod n_1) < n_2$. $A = kn_1 + b$, 7 mod 4 \neq 7 mod 2

Thm: If a is an odd integer and if $k \in \mathbb{Z}^+$, $k \ge 3$, then $a^{\frac{\phi(2^k)}{2}} = a^{2^{k-2}} \equiv 1 \mod 2^k$

Proof:

By using mathematical induction. If *a* is an odd integer, then a = 2b + 1, $b \in Z^+ \cup \{0\}$ $\therefore a^2 = (2b + 1)^2 = 4b^2 + 4b + 1 = 4b(b + 1) + 1$ Since either *b* or *b*+1 is even $\Rightarrow 8 \mid 4b(b + 1)$ $\Rightarrow a^2 = 1 \mod 8$ \therefore It is true when k = 3. Assume that $a^{2^{k-2}} = 1 \mod 2^k$, then $_{9-35}$

$$\exists d \in z^{+} \ni a^{2^{k-2}} = 1 + d \cdot 2^{k}$$

$$\therefore a^{2^{k-1}} = (a^{2^{k-2}})^{2} = 1 + d \cdot 2^{k+1} + d^{2} \cdot 2^{2k}$$

$$\Rightarrow a^{2^{k-1}} = 1 \mod 2^{k+1}$$

Remark:

1.From this theorem we know that no power of 2, other than 2 and 4, has a primitive root.

2. The largest possible order modulo 2^k , $k \ge 3$, is

$$\frac{\phi(2^k)}{2} = 2^{k-2}.$$

Thm: Let $k \ge 3$, then $\operatorname{ord}_{2^{k}} 5 = \frac{\phi(2^{k})}{2} = 2^{k-2}$.

Proof:

Since $5^{2^{k-2}} = 1 \mod 2^k$ (from above theorem), if we can prove that $\operatorname{ord}_{2^k} 5 \not\mid 2^{k-3}$, i.e, $5^{2^{k-3}} \neq 1 \mod 2^k$, then $\operatorname{ord}_{2^k} 5 = 2^{k-2}$. By mathematical induction, for k = 3, $5 = 1 + 4 \mod 8$ $= 1 + 2^{k-1} \mod 2^k \neq 1 \mod 2^k$.

Assume that $5^{2^{k-3}} = 1 + 2^{k-1} \mod 2^k$ then $\exists d \in Z^+ \ni 5^{2^{k-3}} = 1 + 2^{k-1} + d \cdot 2^k$ $\therefore 5^{2^{k-2}} = (1 + 2^{k-1})^2 + 2(1 + 2^{k-1})d \cdot 2^k + (d \cdot 2^k)^2$ $= (1 + 2^{k-1})^2 = 1 + 2^k + 2^{2k-2} = 1 + 2^k \neq 1 \mod 2^{k+1}$ $\therefore \operatorname{ord}_{2^k} 5 = \frac{\phi(2^k)}{2} = 2^{k-2}$

Thm:

If $n \in Z^+$ and $n \neq p^t$ or $n \neq 2p^t$, where *p* is an odd prime, then *n* does not have a primitive root.

Proof:

Let $n \in \mathbb{Z}^+$ and $n = p_1^{t_1} p_2^{t_2} \cdots p_m^{t_m}$. Assume that *n* has a primitive root *r*, then (r, n)=1 and $\operatorname{ord}_n r = \phi(n)$. $(r, n) = 1 \implies (r, p_i^{t_i}) = 1, \forall 1 \le i \le m.$ By Euler's theorem, we have $r^{\phi(p_i^{t_i})} = 1 \mod p_i^{t_i}, \forall i$. Let $u = \text{lcm}(\phi(p_1^{t_1}), \phi(p_2^{t_2}), \dots, \phi(p_m^{t_m}), \text{then})$ $r^{u} = 1 \mod p_{i}^{t_{i}}, \forall i = 1, 2, \cdots m$ \therefore By CRT, we have $r^u = 1 \mod n \Rightarrow \operatorname{ord}_n r = \phi(n) \le u$. $\therefore \phi(n)$ is multiplicative $\Rightarrow \phi(n) = \phi(p_1^{t_1} p_2^{t_2} \cdots p_m^{t_m})$ $=\phi(p_1^{t_1})\cdots\phi(p_m^{t_m})$ 9-39

 $\Rightarrow \phi(p_1^{t_1})\phi(p_2^{t_2})\cdots\phi(p_m^{t_m}) \leq \operatorname{lcm}(\phi(p_1^{t_1}),\phi(p_2^{t_2})\cdots\phi(p_m^{t_m}))$ However, it is only possible for that $\phi(p_1^{t_1}),\phi(p_2^{t_2}),\cdots,\phi(p_m^{t_m})$ are pairwise relative prime. $\because \phi(p_i^{t_i}) = p_i^{t_i}(p_i - 1)$ is even if p is odd, or if $p_i = 2$ and $t_i \geq 2$. $\therefore \phi(p_1^{t_1}),\phi(p_2^{t_2}),\cdots,\phi(p_m^{t_m})$ are not paitwise relatively prime unless m = 1 and $n = p^t$ or m = 2 and $n = 2p^t$, where p is an odd prime and t is positive integer.

Thm:

If *p* is an odd prime and $t \in Z^+$, then $2p^t$ possesses a primitive root. Let *r* be a primitive root modulo p^t . (i) If *r* is odd, then *r* is also a primitive root modulo $2p^t$. (ii) If *r* is even, then $r + p^t$ is a primitive root modulo $2p^t$. Proof:

If r is a primitive root modulo p^t , then

 $r^{\phi(p^t)} = 1 \mod p^t \implies \text{no } a < \phi(p^t) \ni r^a = 1 \mod p^t$

 $\therefore \phi(2p^t) = \phi(2) \ \phi(p^t) = \phi(p^t) \Rightarrow r^{\phi(2p^t)} = 1 \mod p^t$ (1)

(i) If *r* is odd, then $r^{\phi(2p^t)} = 1 \mod 2$ (2) $\therefore r^{\phi(2p^t)} = 1 \mod 2p^t \Rightarrow r$ is a primitive root modulo $2p^t$ (ii) If *r* is even, then $r + p^t$ is odd. $\therefore (r + p^t)^{\phi(2p^t)} = (r + p^t)^{\phi(p^t)} = 1 \mod p^t$ and $(r + p^t)^{\phi(2p^t)} = 1 \mod 2$ $\Rightarrow r + p^t$ is a primitive root modulo $2p^t$.

Thm:

The positive integer n, n > 1, possesses a primitive root iff $n = 2, 4, p^t$ or $2p^t$, where p is an odd prime and $t \in Z^+$.

9.4 Index Arithmetic

Let *r* be a primitive root modulo *m*, $m \in Z^+$, then $S = \{r, r^2, ..., r^{\phi(m)}\}$

is a reduced system of residues modulo *m*.

If $a \in S$, then \exists a unique integer x with $1 \le x \le \phi(m) \ge r^x = a \mod m$.

Def:

Let *m* be a positive integer with primitive root *r*.

If $a \in Z^+$ with (a, m) = 1,

then the unique integer x with $1 \le x \le \phi(m)$ and $r^x = a \mod m$ is called the *index* of a to the base r modulo m.

We write $x = ind_r a$ (assume *m* is fixed) and

 $a = r^{ind_r a} \mod m$

Property: If $a = b \mod m$ and (a, m) = (b, m) = 1, then ind_r $a = ind_rb$ a r^1 (ind $r^{a_1} = 1$) a_2 r^{2} (ind $r^{a_{2}} = 2$) $r^{\phi(m)}$ (ind $a_{\phi(m)} = \phi(m)$ *→ a_{φ(m})*

Thm:

Let $m \in Z^+$ with primitive root *r*, and *a*, *b* be integers relatively prime to *m*. Then (i) $\operatorname{ind}_r 1 = 0 \mod \phi(m)$. (ii) $\operatorname{ind}_r(ab) = \operatorname{ind}_r a + \operatorname{ind}_r b \mod \phi(m)$ (iii) $\operatorname{ind}_r a^k = k \cdot \operatorname{ind}_r a \mod \phi(m)$ if $k \in Z^+$

Proof: (i) $\therefore r^{\phi(m)} = 1 \mod m \Rightarrow \operatorname{ind}_r 1 = \phi(m) = 0 \mod \phi(m)$ (ii) \therefore (1) $r^{\operatorname{ind}_r(ab)} = ab \mod m$ and (2) $r^{\operatorname{ind}_r a + \operatorname{ind}_r b} = r^{\operatorname{ind}_r a} \cdot r^{\operatorname{ind}_r b} = ab \mod m$ $\therefore \operatorname{ind}_r(ab) = \operatorname{ind}_r a + \operatorname{ind}_r b \mod \phi(m)$ (iii) $\therefore r^{\operatorname{ind}_r a^k} = a^k \mod m$ and $(r^{\operatorname{ind}_r a})^k = a^k \mod m$ $\therefore \operatorname{ind}_r a^k = k \cdot \operatorname{ind}_r a \mod \phi(m)$

Ex: Solve $6x^{12} = 11 \mod 17$ Sol: (1)Find that 3 is a primitive root of 17. Form table 1, we have $ind_3(6x^{12}) = ind_311 = 7 \mod 16$

Using (ii) and (iii), we have $ind_3(6x^{12}) = ind_36 + 12ind_3x \mod 16$ $\Rightarrow 7 = 15 + 12 \cdot ind_3x \mod 16$ $\Rightarrow 12 \cdot ind_3x = 8 \mod 16$ $\Rightarrow ind_3x = 2 \mod 4$ $\Rightarrow ind_3x = 2, 6, 10 \text{ or } 14 \mod 16$ $\therefore x=3^2=9, \text{ or } x=3^6=15, \text{ or } x=3^{10}=8, \text{ or } x=3^{14}=2$

Table 1.indices to the base 3 modulo 17

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ind ₃ a	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Use table 1 to find all solutions of $7^x = 6 \mod 17$ Sol:

 $ind_3(7^x) = ind_36 = 15 \mod 16$ From (iii), we have $ind_3(7^x) = x \cdot ind_37 = 11x \mod 16 = 15 \mod 16$ $\therefore 11^{-1} = 3 \mod 16$ $\therefore x = 13 \mod 16$

Def:

Ex:

If *m* and $k \in Z^+$ and (a, m) = 1. We say that *a* is a <u>*k*th power residue of *m*</u> if

 $x^k = a \mod m$

has a solution.

Thm: Let $m \in Z^+$ and *r* be a primitive root modulo *m*. If $k \in Z^+$ and (a, m) = 1, then $x^k = a \mod m$ has a solution iff *\(\phi(m)*) $a^{d} = 1 \mod m$ where $d = (k, \phi(m))$. Furthermore, if there are solutions of $x^k = a \mod m$, then there are exactly *d* incongruent solutions modulo *m*.

Proof:

 $x^{k} = a \mod m$ has holds iff $k \cdot \operatorname{ind}_{r} x = \operatorname{ind}_{r} a \mod \phi(m)$ (1) Let $d = (k, \phi(m))$ and $y = \operatorname{ind}_r x \ni x = r^y \mod m$. Then $ky = ind_r a \mod \phi(m)$ (2) has no solution if $d \nmid ind_r a$. Hence there are no solutions of $x^k = a \mod m$ if $d \nmid ind_r a$. If d ind, a, then there are exactly d solutions \ni (1) holds. Since $d \mid \operatorname{ind}_r a$ iff $\frac{\phi(m)}{d} \operatorname{ind}_r a = 0 \mod \phi(m)$ and this congruence holds iff $a^{\frac{\phi(m)}{d}} = 1 \mod m$. $(\frac{\phi(m)}{2} \operatorname{ind}_r a = 0 \mod \phi(m) \Rightarrow \operatorname{ind}_r a^{\frac{\phi(m)}{d}} = 0 \mod \phi(m) \Rightarrow a^{\frac{\phi(m)}{d}} = 1 \mod m.)$

Ex: Determine whether 5 is a sixth power residue of 17 (i.e., whether $x^6 = 5 \mod 17$ has a solution.)

Sol: :: (6, 16) = 2 and
$$5^{\frac{16}{(6, 16)}} = 5^8 = -1 \mod 17 \neq 1 \mod 17$$

∴ 5 is not a sixth power residue of 17.

Thm^{*}: If *n* is an odd compositive positive integer, then *n* passes Miller's test for at most $\frac{n-1}{4}$ bases *b* with $1 \le b \le n-1$.

Lemma:

Let *p* be an odd prime and let *e*, $q \in Z^+$. Then the number of incongruent solutions of

 $x^q = 1 \mod p^e$

is $(q, p^{e-1}(p-1))$.

Proof:

Let *r* be a primitive root of p^e , then $x^q = 1 \mod p^e$ iff $qy = 0 \mod \phi(p^e)$, where $y = \operatorname{ind}_r x$. \therefore There are exactly $(q, \phi(p^e))$ incongruent solutions of $qy = 0 \mod \phi(p^e) \Rightarrow$ there are $(q, \phi(p^e)) = (q, p^{e-1}(p-1))$ incongruent solutions of $x^q = 1 \mod p^e$.

Proof of Thm*:

Let $n - 1 = 2^s t$, $s \in z^+$ and t is odd and $t \in z^+$.

For *n* to be a strong pseudo prime to be base *b*, either $b^t = 1 \mod n$ or $b^{2^{j}t} = -1 \mod n$ for some $0 \le j \le n$ s-1. In either case, $b^{n-1}=1 \mod n$. If $p_i^{e_j}|n$, then $(n-1, \phi(p_i^{t_j})) = (n-1, p_i-1)$. (page 195) Let $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$. : there are $(n-1, p_i^{e_j-1}(p_i-1)) = (n-1, p_i-1)$ $p_j^{e_j}, j = 1, 2, \dots, r$. incongruent solutions of $x^{n-1} = 1 \mod \prod_{j=1}^{n} (n-1, p_j - 1)$ \therefore By CRT, there are exactly incongruent solutions of $\mathcal{X}^{n_53} = 1 \mod n$.

(1) For
$$p_k^{e_k}$$
, $e_k \ge 2$, $\because \frac{p_k - 1}{p_k^{e_{k-1}}} = \frac{1}{p_k^{e_{k-1}}} - \frac{1}{p_k^{e_k}} \le \frac{2}{9}$, $(p_k = 3, e_k = 2)$
 $\therefore \prod_{j=1}^r (n-1, p_j - 1) \le \prod_{j=1}^r (p_j - 1) \le \prod_{j=1}^r p_j (\frac{2}{9} p_k^{e_k}) \le \frac{2}{9} n$
 $\therefore \frac{2}{9} n \le \frac{1}{4} (n-1)$ for $n \ge p \therefore \prod_{j=1}^r p_j (\frac{2}{9} p_k^{e_k}) \le \frac{1}{4} (n-1)$
 \therefore there are at most $\frac{n-1}{4}$ integers $b, 1 \le b \le n$, for which n is a strong pseudo prime to be base b .
(2) For $n = p_1 p_2 \dots p_r$, where p_1, p_2, \dots, p_r are distinct odd primes. Let $p_i - 1 = 2^{s_i} t_i$, $i = 1, 2, \dots, r$, s_j , $t_i \in z^+$ and t_i is odd. Reorder the primes p_1, p_2, \dots, p_r (if necessary) so that $s_1 \le s_2 \le \dots \le s_r$. Note that $(n-1, p_i-1) = 2^{\min(s,s_i)}(t, t_i)$

The number of solutions of $x^t = 1 \mod p^i$ is $T_i = (t, t_i)$. There are $2^j t_i$ solutions of $x^{2^j t} = -1 \mod p_i$, $0 \le j \le s_i$ 1, and no solutions otherwise. \therefore By CRT, there are $T_1 T_2 \dots T_r$ solutions of $x^t = 1 \mod n$, and $2^{jr} T_1 T_2 \dots T_r$ solutions of $x^{2^j t} = -1 \mod n$, $0 \le j \le s_i$ 1. \therefore there are a total of $T_1 T_2 \dots T_r \left[1 + \sum_{j=0}^{s_i-1} 2^{jr} \right] = T_1 T_2 \dots T_r \left[1 + \frac{2^{s_i r}}{2^{r-1}} \right]$ Integer $b, 1 \le b \le n$ -1, for which n is a strong pseudo prime to the base b.

Note that $\phi(n) = (p_1-1)(p_2-1)...(p_r-1) = t_1t_2\cdots t_r 2^{s_1+\cdots+s_r}$

We want to show that
$$T_1T_2 \cdots T_r \left[1 + \frac{2^{s_1r}}{2^{r-1}} \right] \le \frac{\phi(n)}{4}$$

 $\therefore \frac{1 + \frac{2^{s_1r} - 1}{2^r - 1}}{2^{s_1 + s_2 + \dots + s_r}} \le \frac{1 + \frac{2^{s_1r} - 1}{2^r - 1}}{2^{s_1r}} \le \frac{1}{2^r - 1} \le \frac{1}{4}$ if $r \ge 3$.
When $r = 2$, $n = p_1p_2$ with $p_1 - 1 = 2^{s_1}t_1$

and $p_2 - 1 = 2^{s_2} t_2, s_1 \le s_2$.

If
$$s_1 = s_2$$
, then $\frac{\left[1 + \frac{2^{s_1} - 1}{3}\right]}{2^{s_1 + s_2}} = \frac{1 + \frac{2^{s_1} - 1}{3}}{2^{s_1} \cdot 2^{s_2 - s_1}} = \frac{\frac{1}{3} + \frac{1}{3 \cdot 2^{2s_1} - 1}}{2^{s_2 - s_1}} \le \frac{1}{4}$

If $s_1 = s_2$, then $(n-1, p_1-1) = 2^s T_1$, and $(n-1, p_2-1) = 2^s T_2$. Let note that $T_1 \neq t_1$, for if $T_1 = t_1$ then $(p_1-1) \mid (n-1)$, so that $n = p_1 p_2 = p_2 = 1 \mod p_1 - 1$ which implies $p_2 > p_1$. $T_1 \neq t_2$ $\Rightarrow T_2 \leq \frac{t_2}{3}, \therefore T_1 T_2 \leq \frac{t_1 t_2}{3}.$ $::\frac{\left[1+\frac{2^{-r}-1}{3}\right]}{2^{2s_1}} \le \frac{1}{2} \Rightarrow T_1 T_2 \left[1+\frac{2^{2s_1}-1}{3}\right] \le t_1 t_2 \frac{2^{2s_1}}{6} = \frac{\phi(n)}{6} \le \frac{n-1}{6} \le \frac{n-1}{4}$

Remark:

The prob. that *n* is a strong pseudo prime to the random chosen base *b*, $1 \le b \le n-1$, is close to $\frac{1}{4}$ only for integers *n* with prime factor is of the form

 $n = p_1 p_2$ with $p_1 = 1 + 2q_1$ and $p_2 = 1 + 4q_2$ where q_1, q_2 are odd primes, or $n = p_1 p_2 p_3$ with $p_1 = 1 + 2q_1$, $p_2 = 1 + 2q_2$ and $p_3 = 1 + 2q_3$, where q_1, q_2, q_3 are distinct odd primes.

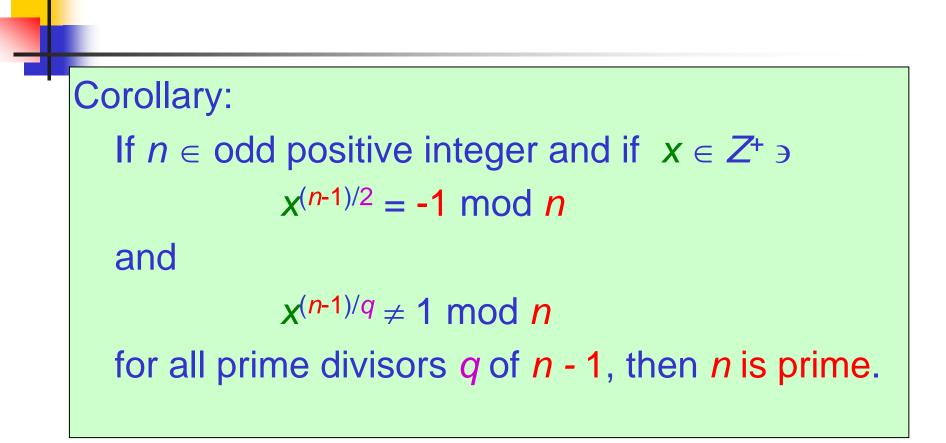
9.5 Primary Test using primitive roots

From Thm, we know that $n \in Z^+$, n > 1, processes a primitive root iff $n = 2, 4, p^t$, or $2p^t$, where p is an odd prime and $t \in Z^+$. Thus, if $n \in Z^+$ and is odd and if $\exists x \in Z^+ \ni x$ is a primitive root satisfying $x^{n-1} = 1 \mod n$, then n is prime. Note: If $n = p^t > 1$, then $x^{\phi(n)} = 1 \mod n$, where $\phi(n) = p^{t-1}(p-1) \neq n-1$.

Thm: If $n \in Z^+$ and if $\exists x \in Z^+ \ni$ $x^{n-1} = 1 \mod n$ and $x^{(n-1)/q} \neq 1 \mod n$ for all prime divisors q of n - 1, then n is prime.

Proof:

 $x^{n-1}=1 \mod n$, $\Rightarrow \operatorname{ord}_n x|(n-1)$. If $\operatorname{ord}_n x \neq n-1$, then $\exists k \in n - 1 = k \cdot \operatorname{ord}_n x$, then $x^{\frac{n-1}{q}} = x^{\frac{k \times \operatorname{ord}_n x}{q}} = (x^{\operatorname{ord}_n x})^{\frac{k}{q}} = 1 \mod n$ $(x^{\frac{n-1}{q}} \neq 1 \mod n, \forall q | n - 1)$ Where *q* is a prime divisor of *k*. However, this contradicts the hypothese of the theorem $\therefore \operatorname{ord}_n x = n - 1$, $\operatorname{ord}_n x \leq n - 1$, we conclude that $\phi(n)$ $= n - 1 \Rightarrow n$ is prime.



This primality test is a deterministic test and is presented by Lucus.

- In order to use this primality test, it needs to factor n-1 in advance. If n-1 cannot be factored, then the method is infeasible.
- 2. This test is very useful for test the primality of Fermat numbers.

Thm:

If *n* is composite, this can be proved with $O((\log_2 n)^2)$ bit operations.

(When the appropriate information is know).

Proof:

If *n* is composite, then \exists *a* and *b* with 1 < a < n, 1 < b < n and n = ab. Taking $O((\log_2 n)^2)$ bit operations to proof that *n* is composite.

Thm :

If *n* is prime, this can be proven using $O((\log_2 n)^4)$ bit operations.

(When the appropriate information is known)

Proof :

Let f(n) be the total number of multiplications and modular exponentiations need to verify that the integer n is prime.

We want to show that $f(n) \le 3\left(\frac{\log n}{\log 2}\right) - 2$ (1) $f(2)=1 \Rightarrow (1)$ is true. Assume that for all primes q, q < n the inequality $f(q) \le 3\left(\frac{\log n}{\log 2}\right) - 2$ is true.

If *n* is prime, then $\exists 2^n q_1, \dots, q_t$ and *x* satisfy $n-1=2^{a}q_{1}\ldots q_{t} \Rightarrow t$ multiplications. i. q_i is prime $\forall 1 \le i \le t \Longrightarrow f(q_i), \forall 1 \le i \le t$ ii. $x^{\frac{n-1}{2}} = -1 \mod n \rightarrow 1$ exponentiations iii. n-1iv. $x^{q_j} \neq 1 \mod n, \forall 1 \le i \le t$ exponentiations $\therefore f(n) = t + (t+1) + \sum_{i=1}^{t} f(q_i) \le 2t + 1 + \sum_{i=1}^{t} 3\frac{\log q_i}{\log 2} - 2 \le 3\frac{\log n}{\log 2} - 2$ = $3\log_2 n - 2$ 1 modular exponentiation requires $O((\log_2 n)^3)$. Total number of bit operations needed is $O((\log_2 n)^4)$.

Remark :

1. Above theorem cannot be used to find this short proof of primality, since the

factorization of *n*-1

and

```
the primitive root x of n
```

are required.

2. An efficient primality test requires fewer than $(\log_2 n)^{c\log_2 \log_2 \log_2 n}$ bit operations, where *c* is a constant.

9.6 Universal Exponents

Def:

A universal exponent of positive integer *n* is a positive *U* such that

 $a^U = 1 \mod n$,

for all integers *a* relatively prime to *n*.

Remark: If $n = p_1^{t_1} p_2^{t_2} \dots p_m^{t_m}$ and (a, n) = 1, then

 $a^{\phi(p^{t_i})} = 1 \mod p^{t_i},$

where $p^{t_i} \mid n$.

 $\Rightarrow a^{U} = 1 \mod n \text{ if } U = lcm(\phi(p_1^{t_1}), \phi(p_2^{t_2}), \dots, \phi(p_m^{t_m})),$

 \Rightarrow **U** exixt for all $n \in Z^+$.

Problem :

- 1. Given *n*, what is the least universal exponent of *n*?
- 2. How to find $a \ge$

 $\operatorname{ord}_{n}a = \lambda(n),$

where $\lambda(n)$ is the least universal exponent

Def :

The least universal exponent of the positive integer *n* is called the *minimal universal exponent* of *n*, and is denoted by $\lambda(n)$.

Remark :

1. If *n* has a primitive root , then $\lambda(n) = \mathcal{Q}(n)$.

- (a) $n = p^t$, then $\lambda(p^t) = \mathcal{O}(p^t) = p^{t-1}(p-1)$, where p is odd prime and $t \in Z^+$.
- (b) n = 2, then $\lambda(2) = \emptyset(2) = 1$.
- (c) n = 4, then $\lambda(4) = \emptyset(4) = 2$.
- (d) $n = 2p^{t}$, then $\lambda(2p^{t}) = \mathcal{O}(2p^{t}) = p^{t-1}(p-1)$.

Remark :

1. If *n* has a primitive root, then $\lambda(n) = \phi(n)$. (a) $n = p^{t}$, then $\lambda(p^{t}) = \phi(p^{t}) = p^{t-1}(p-1)$, where *p* is odd prime and $t \in Z^{+}$. (b) n = 2, then $\lambda(2) = \phi(2) = 1$. (c) n = 4, then $\lambda(4) = \phi(4) = 2$. (d) $n = 2p^{t}$, then $\lambda(2p^{t}) = \phi(2p^{t}) = p^{t-1}(p-1)$. 2. If $n = 2^{t}$, $t \ge 3$, then $\lambda(2^{t}) = 2^{t-2}$,

 $\therefore \text{ If } (a, n) = 1 \Longrightarrow a \text{ is odd and } a^{2^{t-2}} = 1 \mod 2^t$

Thm : Let $n = 2^{t_0} p_1^{t_1} \dots p_m^{t_m}$, then $\lambda(n) = [\lambda(2^{t_0}), \phi(p_1^{t_1}), \dots, \phi(p_m^{t_m})]$. Moreover, $\exists a \in Z^+ \ni ord_n a = \lambda(n)$.

Proof : Let $a \in Z^+$, and (a,n) = 1 and

let $M = \text{lcm}[\lambda(2^{t_0}), \phi(p_1^{t_1}), ..., \phi(p_m^{t_m})]$

 $a^{\lambda(p^t)} = a^{\phi(p^t)} = 1 \mod p^t$, for all $p^t \mid n$.

 $\therefore a^{M} = 1 \mod p^{t} \rightarrow a^{M} = 1 \mod (CRT)$

Now , we prove that M is the least universal exponent. Let r_i be a primitive root of $p_i^{t_i}$.

Consider the system of simultaneous congruences .

$$a = 5 \mod 2^{t_0} \Rightarrow ord_{2^{t_0}} a = \lambda(2^{t_0})$$

$$a = r_1 \mod p_1^{t_1} \Rightarrow ord_{p_1^{t_1}} a = \lambda(p_1^{t_1}) = \varphi(p_1^{t_1})$$

$$\vdots$$

$$a = r_m \mod p_m^{t_m} \Rightarrow ord_{p_m^{t_m}} a = \lambda(p_m^{t_m}) = \varphi(p_m^{t_m})$$
Then, by CRT, $\exists a \ni ord_n a = M$, and $1 \le a \le n-1$
Remark : Above thm tells us a method to find $a \ni (a, n) = 1$ and $ord_n a = \lambda(n)$

Note: A carmichael number *n* is a composite integer that satisfies

 $b^{n-1} = 1 \mod n$,

for $\forall b \in Z^+$, and (b, n) = 1.

We have proved that if $n = q_1 q_2 \dots q_k$, where $q_1 q_2 \dots q_k$ are distinct primes satisfying $(q_j - 1) | (n - 1), \forall 1 \le j \le k$, then *n* is a Carmichael number in Thm5.7 (p.195). Here ,we prove the converse of the result.

Thm : If n > 2 is a Carmichael number, then $n = q_1 q_2 ... q_k$, where the $g_j s$ are distinct primes $\exists (q_j - 1) | (n - 1)$ for all j = 1, 2, ..., k

Proof : If *n* is a Carmichael number m then $b^{n-1} = 1 \mod n$, $\forall (b, n) = 1$

however, $\exists a \in Z^+$, such that $ord_n a = \lambda(n)$ and (a, n) = 1. $\therefore \lambda(n) | n-1$

(1)*n* must be odd, Θ if *n* is even, then n-1 is odd, but $\lambda(n)$ is even (n > 2), contradicting $\lambda(n) | n-1$. (2)*n* must be the product of distinct primes, i.e. $n = q_1 q_2 \dots q_k$. If

$$p^t \mid n, t \ge 2$$
, then $\lambda(p^t) = \varphi(p^t) = p^{t-1}(p-1) \mid \lambda(n) \mid n-1$, which

S impossible *p* | *n*.

(3) If $n = q_1 q_2 \dots q_k$, where $q_j s$ are distinct primes , $1 \le j \le k$, then $\lambda(q_j) = \varphi(q_j) = (q_j - 1) | \lambda(n)(n - 1)$.

Thm : A Carmichael number must have at least three different odd prime factors .

Proof : Let *n* be a Carmichael number . Since *n* is the product of distinct primes .Let n = pq, where *p* and *q* are odd primes with p > q, then n-1 = pq-1 = (p-1)q + (q-1) $q-1 \neq 0 \mod p-1$. $\rightarrow (p-1) \nmid (n-1)$, it is impossible, \therefore *n* cannot be a Carmichael number.