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6.1  Wilson’s theorem
 Thm: If p is prime, then (p-1)! = -1 mod p
 Proof: When p = 2, (p-1)! = 1! = 1 = -1 mod 2.

When p = 3, (p-1)! = 2! = 2 = -1 mod 3.
When p  5,  a, 1  a  p-1,  a-1, 1 a-1 p-1 
→aa-1=1 mod p
the only positive integers less than p
that are their own inverse are 1 and p-1.
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 Thm: If nZ+ and (n-1)! = -1 mod n, then n is
prime.

 Proof:Let n = ab, 1<a<n, 1<b<n, and (n-1)!=-1 mod n
a|n and a|(n-1)!, n|(n-1)!+1
a|[(n-1)!+1-(n-1)!]=1,
This is a contradiction since a>1
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• Deterministic: 
If the output is Yes, then n is prime certainly.

• Probabilistic: 
If the output is No, then n is composite. 
If output is Yes, then the probability that 

n is prime is 1-, 
where , less than 1, can be controlled.

Primality
Test

n Yes

or No

(n-1)! = -1 mod n
iff

n is prime

e.g.
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 Primality test by using Wilson’s theorem.
 Input: n
 Output: Yes or No
 Algorithm: compute (n-1)!=a mod n

if a=-1, then output “Yes”
otherwise, output “No”

 Complexity: (n-2) multiplications
 O(n(log2n)2) bit operation
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Fermat’s little theorem
 Thm: If p is prime and aZ+ with p | a,

then ap-1=1 mod p.
Proof: 

Since p | a,  p | ja, 1  j  p-1,
But {1,2,…,p-1}={a,2a,…(p-1)a}     

∵ ((p-1)!, p) = 1
 ap-1=1 mod p
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 Thm:  If p is prime and aZ+, then ap-a=0 mod p
 Proof: If p|a, then p|ap  ap-a=0 mod p

If p | a, then p|ap-1-1 mod p  ap-a=0 mod p

 Thm:  If p is prime and aZ+, with p | a,then           
a-1=ap-2 mod p

 Proof: If p | a, then ap-1=1 mod p  a·ap-2=1 mod p
a-1=ap-2 mod p

 Corollary: If a, bZ+ and p is prime with p | a, then 
the solution of ax=b mod p is 

x=ap-2b mod p
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 Pollard P-1 method: 
Factor n, when n has a prime factor p→ the prime
dividing p-1 are relatively small.
Assume p|n, and (p-1)|k!, where k is a predetermined
positive integer.
Input:n
output:p
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Algorithm 1:  
1.Find M=2k!-1 mod n, where M≠0

since 2k!=1 mod p(if (p-1)|k!)
p|M=2k!-1mod n

2.Compute (M,n)=d, then d is an ontrivial divisor of n.
Algorithm 2:

Let p-1=          , pi<R and ai max{ai}=A
1.Find          (qi is prime)p-1|R
2.Compute M=2R-1 mod n, where M=0
3.Compute (M,n)=d, then d is a nontrivial divisor of n.
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 Problem  :How to compute a k! mod n efficiently?
 Algorithm:Let r1=a,

For i=2 to k, 
ri=ri-1

i mod n
output rk

 a5!=((((a1)2)3)4)5 mod n
 Remark:In general, B cannot be too large,otherwise

Pollard P-1 method cannot work properly.
(B<1000)
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6.2 PseudoPrime
 Ancient Chinese conjectured that if 2n = 2 mod n,

then n must be prime.
 Fact: If n is prime, then bn = b mod n, bZ+

 Problem: If bn = b mod n, is n prime?   Ans: No.
 Ex: n = 341 = 11  31

210 = 1 mod 11  2340 = 1 mod 11
25 = 1 mod 31  (25)68 = 2340 = 1 mod 31
2340 = 1 mod 341
2341 = 2 mod 341
but 341 is composite
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 Def: Let b  Z+. If n is a composite positive integer
and bn = b mod n, then 
n is called a pseudoprime to the base b.

 Remark:If (b,n)=1, then bn=b mod n is equivalent to
bn-1=1 mod n.

 Ex: 341=1131,561=31117 and 645=3543 are   
pseudoprimes to the base 2.

 Problem:Given bZ+,how many pseudoprimes to
the base b?

 Ans: Infinitely many pseudoprimes to any given base
 Prove the answer for the base 2.
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 Lemma: If d, nZ+ and d|n, then 2d-1|2n-1
Proof: d|n, t→dt=n

2dt-1=(2d-1)(2d(t-1)+2d(t-2)+…+1) 
(2d-1)|(2n-1)

 Thm: There are infinitely many pseudoprimes to the
base 2.

 Proof:1.If n is an odd pseudoprime to the base 2,
then m=2n-1 is also an odd pseudoprime to
the base 2, because n=341 is a pseudoprime
to the base 2, we can conclude that there are
infinitely many pseudoprimes to the base 2.
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2. Let n=dt be an odd pseudoprime,
n is composite and 2n-1=1 mod n,
Let m=2n-1, then
(a)m is composite since 2d-1|(2n-1)=m
(b)since 2n=2 mod n, so kZ 2n-2=kn

2m-1=         =2kn m=(2n-1)|(2kn-1)=2m-1-1
2m-1-1=0 mod m,2m-1=1 mod m

We have that m is also a pseudoprime to the base 2
 If n is a pseudoprime to the base b, it does not imply 

that n is also a pseudoprime to the base b', where b'b.

222 n
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 Ex: 341 is a pseudoprime to the base 2, but not to
the base 7.

 A Primality Test Method is as follow: 
Input: n
(1) Choose 1<b<n, and compute 

bn-1 = a mod n,
if a  1,
then output “n is composite”.

(2) repeat (1) k times.
(3) output “n may be prime”.
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 Remark:
1.If the output of the method is “n is composite”, the n

must be composite
2.If k is increased, then the probability that 

“n is composite” is decreased.

 Question: If k → ∞, does the probability = 0?
Or  composite integers n → bn-1=1 mod n,
b with (b, n) = 1?



6-18

 Def:A composite integer that satisfies bn-1=1 mod n,
bZ+ and (b,n)=1, is called a Carmichael number

Ex: Prove that 561 = 31117 is a Carmichael number.
Proof: 

Let b  Z+ with (b,561)=1. Then (b,3)=(b,11)=(b,17)=1
 b2 = 1 mod 3, b10 = 1 mod 11, b16 = 1 mod 17,
∵ 2|560,10|560, and 16|560,
 b560=1 mod 3, b560=1 mod 11, b560=1 mod 17
 b560=1 mod 561, b with (b,n)=1.

 It is conjectured that there are infinitely many 
Carmichael numbers, but so far this has not been
demonstrated.
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Conditions for producing Carmichael number
 Thm: If n = q1q2…qk, where qi is prime

and qi  qj ,  1  i, j  k, 
and (qj-1)|(n-1),  j. 

Then n is a Carmichael number.
 Proof:Let bZ+ and (b, n)=1, then (b, qj)=1, 1  j  k

mod qj ,1  j  k

(qj-1)|(n-1)  bn-1 = 1 mod qj ,1  j  k
By CRT, we see that bn-1 = 1 mod n
 n is a Carmichael number.

11 jqb
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 Remark: 

All Carmichael numbers must be of the form

n = q1q2…qk

where the qj’s are distinct primes and 

(qj-1)|(n-1), 

1  j  k. 
[Proof is shown in chapter 8]
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 Let n be an odd integer.
If bn-1=1 mod n, then n is either a prime

or a pseudoprime to the base b.
If n is a prime, then b(n-1)/2 = ±1 mod n
If n is a pseudoprime to the base, then it’s possible
that b(n-1)/2  ±1 mod n

Randomly choose b,1 b  n-1
If b(n-1)/2  ±1 mod n
then n is composite

n, odd
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 Def: Let nZ+ and n-1=2st, where s, t Z+ and t is odd.
We say that n passes Miller’s test for the base b,
if either bt = 1 (mod n) or b  t = -1 mod n for
some j with 0  j  s-1.

 Thm: If n is prime and b is a positive integer with n | b,
then n passes Miller’s test for the base b.

Proof:Let n-1=2st, where s,tZ+ and t is an odd integer
Let xk=                          , for k=0,1,2,…,s
∵n is prime, x0=bn-1=1 mod n.

x1
2=x0=1 mod nx1=1 mod n or x1=-1 mod n

j2

tn ksk

bb

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If x1=-1 mod nn passes Miller’s test for the
base b.             
If x1=1 mod n then x2

2=x1=1 mod nx2=1 or
x1=-1 mod n.
In general, if x0=x1=…=xk=1 mod n, with k<s,
we know that either xk+1=-1 mod n or xk+1=1
mod n.
Continuing this procedure for k=0,1,2,…,s, we
find that either xk=1 mod n for k=0,1,2,…,s, or
xk=-1 mod n for some integer k. n passes
Miller’s test for the base b.
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 Def: If n is composite and passes Miller’s test for the
base b, then we say n is a strong pseudoprime
to the base b.

 Thm: There are infinitely many strong pseudoprimes
to the base 2.

Proof Strategy:
If n is a pseudoprime to the base 2, then 
2n-1 is an pseudoprime and a strong pseudoprime
to the base 2.

 Proof: If n is composite and 2n-1=1 mod n,2n-1-1=nk,
kZ+ and k is odd.  N-1=(2n-1)-1=2n-2=2nk.
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Note that 2(N-1)/2=2nk=(2n)k=1 mod N
(∵2n=(2n-1)+1=N+1)

there are infinitely many strong pseudoprimes
to the base 2.

 Thm: If n is an odd composite positive integer, then n
passes Miller’s test for at most (n-1)/4 bases b,
with 1  b  n-1. (will be proven in chapter 8)
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 Thm: Rabin’s probabilistic primality test.
Let n  Z+ and n is odd. 
Pick k different positive integers less than n and 
perform Miller’s test on n for each of these bases.
If n is composite, the probability that n passes all k
tests is less than (1/4)k.

 Complexity: O((log2n)4)
 Generalized Riemann hypothesis (a famous 

conjecture): Deterministic primality test
 Conjecture: For every composite positive integer n,          

there is a base b with b < 2(log2n)2 such that n fails 
Miller’s test for b.
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 Thm: If the generalized Riemann hypothesis is valid.
Then there is an algorithm to determine whether
a positive integer n is prime using O((log2n)5)
bit operations.

 Proof: Miller’s test needs O((log2n)3) bit operations
1<b<2(log2n)2, we need O((log2n)2) Miller’s
tests.
We need O((log2n)5) bit operations to
determine whether n is composite or prime.
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 Important facts:
To factor n needs subexponential time.
To determine n is prime needs polynomial time.
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6.3 Euler’s Theorem
 Def: Let nZ+ ,the Euler phi-function (n) is defined

to be the number of positive integers not
exceeding n that are relatively prime to n.

 Ex:(10) = 4. 
1,3,7,9 (less than 10) are relatively prime to 10.

Note: Compared with (x), 
defined in “3.1 Prime numbers.”
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 Def: A reduce residue system modulo n is a set of 
(n) integers, such that each element of the set
is relatively prime to n, and no two different
elements of the set are congruent modulo n.

 s = {a1,a2,…,a(n)}, where (ai,n)=1, 1 i (n) 
and ai  aj mod n

 Note: |s| = (n)
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 Thm: Let s = {r1, r2, …, r(n)}
be a reduced residue system modulo n. 
If (a,n)=1, aZ+, then the set

s' = {ar1, ar2, …, ar(n)} 
is also a reduced residue system modulo n.

 Proof: (a, n) = 1 and (rj, n) = 1
 (arj,n) = 1, j = 1,2,…,(n)
 arj  ari mod n, j  i.
So s’ is a reduced residue system modulo n.
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Euler’s Theorem
 Thm: If m  Z+ and a  Z with (a, m) = 1, then 

a(m) = 1 mod m.
 Proof:

Let s = {r1, r2, …, r(m)} and s' = {ar1, ar2, …, ar(n)}
be two reduced residue system modulo m, where 
(a,m) = 1, then
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 Remark: 
1. If m is prime, then Euler’s Theorem is equivalent to 

Fermat’s Little Theorem.
2. If (a, m) = 1,then a-1 = a(n)-1 mod m
3. If (a, m) = 1, the solution of ax = b mod m is

x = a(m)-1b mod m

 Problem: Given m, how can we find (m)?


