Chapter 6

!'_ Some Special Congruences
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6.1 Wilson’s theorem

m Thm: If pis prime, then (p-1)! =-1 mod p

s Proof: Whenp =2, (p-1)!=1'=1=-1 mod 2.
Whenp =3, (p-1)!'=2!'=2=-1 mod 3.
Whenp>5,VvVa,l1<a<p-l,3al 1<al<p-1
—aai=1modp

the only positive integers less than p
that are their own inverse are 1 and p-1.

p-2
We have Hi =1mod p
p:z p-2
(p-D=]Ji=1x]]ix(p-1)=p-1=-1modp
=1 1=2
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m Thm:IfneZ*and (n-1)! =-1 mod n, thennis
prime.

s Proof:.Let n = ab, 1<a<n, 1<b<n, and (n-1)!=-1 mod n
aln and a|(n-1)!, n|(n-1)!+1
al|[(n-1)!+1-(n-1)']=1,

This Is a contradiction since a>1
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N [Primality| Y©3 e.g.
Test or No

e Deterministic:
If the output is Yes, then n is prime certainly.
* Probabilistic:
If the output is No, then n is composite.
If output is Yes, then the probability that
nis prime is 1-¢,
where ¢, less than 1, can be controlled.
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Primality test by using Wilson’s theorem.

Input: n

Output: Yes or No

Algorithm: compute (n-1)!=a mod n
If a=-1, then output “Yes”
otherwise, output “No”

Complexity: (n-2) multiplications
= O(n(log,n)?) bit operation
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Fermat’s little theorem

= Thm: If pis prime and aeZ* with p ta,
then aP1=1 mod p.

Proof:
Sincepta,=ptja, 1<) <p-1,

But {1 2,..., p 1}={a,2a,...(p-1)a}
:>H| _Hla

= (p-1)!= a'“l_Il—aIo (p-D!=modp

((p i p) =
aP-1=1 mod p
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Thm: If p is prime and aeZ*, then aP-a=0 mod p

Proof: If p|a, then p|aP = aP-a=0 mod p
If p ka, then plaP-1-1 mod p = aP-a=0 mod p

Thm: If p is prime and a<Z*, with p £a,then
al=aP?2mod p

Proof: If p ¥a, then aP1=1 mod p = a-aP?=1 mod p
—al=aP2 mod p

Corollary: If a, beZ* and p Is prime with p ¥a, then
the solution of ax=b mod p is
Xx=aP-2b mod p
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= Pollard P-1 method:
Factor n, when n has a prime factor p— the prime
dividing p-1 are relatively small.
Assume p|n, and (p-1)|k!, where k is a predetermined
positive integer.
Input:n
output:p
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Algorithm 1:
1.Find M=2X-1 mod n, where M#0
since 2X=1 mod p(if (p-1)|k"
p|M=2K-1mod n
2.Compute (M,n)=d, then d is an ontrivial divisor of n.
Algorithm 2:
Let p-le P, pi<R and a< max{a;}=A
1.Find | ]a/(q; is prime)=p-1|R
2.Compute M=2R-1 mod n, where M=0
3.Compute (M,n)=d, then d is a nontrivial divisor of n.
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= Problem :How to compute a k! mod n efficiently?
= Algorithm:Let r,=a,

For i=2 to Kk,

r=r._,'mod n

output r,

= a>=((((@")?)%)*)> mod n
= Remark:In general, B cannot be too large,otherwise

Pollard P-1 method cannot work properly.
(B<1000)
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i 6.2 PseudoPrime

Ancient Chinese conjectured that if 2" = 2 mod n,
then n must be prime.

s Fact: If nis prime, then b" = b mod n, VbeZ*

s Problem: If b" = b mod n, is n prime? Ans: No.
m EX:N=341=11x%x31
2'9=1mod 11 = 239 =1mod 11
25 =1 mod 31 = (2°)% = 2340 =1 mod 31
2340 = 1 mod 341
2341 = 2 mod 341
but 341 is composite
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Def: Let b € Z*. If n is a composite positive integer

and b" = b mod n, then
n is called a pseudoprime to the base b.

Remark:lf (b,n)=1, then b"=b mod n is equivalent to
b"1=1 mod n.

Ex: 341=11x31,561=3x11x17 and 645=3x5x43 are

pseudoprimes to the base 2.

Problem:Given beZ*,how many pseudoprimes to
the base b?

Ans: Infinitely many pseudoprimes to any given base

Prove the answer for the base 2.
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« |[Lemma: If d, neZ* and d|n, then 29-1|2"-1

Proof: d|n, It—dt=n
20t-1=(24-1)(24tD+2d(t2)+ | +1)
=(24-1)|(2"-1)

= | Thm: There are infinitely many pseudoprimes to the
base 2.

s Proof:1.If nis an odd pseudoprime to the base 2,
then m=2"-1 is also an odd pseudoprime to
the base 2, because n=341 is a pseudoprime
to the base 2, we can conclude that there are

Infinitely many pseudoprimes to the base 2.
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2. Let n=dt be an odd pseudoprime,
n is composite and 2"1=1 mod n,
Let m=2"-1, then
(a)m is composite since 29-1|(2"-1)=m
(b)since 2"=2 mod n, so dkeZ 2"-2=kn
—2m-1=22"-2 =pkn ym=(2n-1)|(2kn-1)=2m-1-1
—2M1-1=0 mod m,2™1=1 mod m
We have that m is also a pseudoprime to the base 2

= If nis a pseudoprime to the base b, it does not imply
that n is also a pseudoprime to the , where b'zb.
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s EX: 341 is a pseudoprime to the base 2, but not to
the base 7.
= A Primality Test Method is as follow:
Input: n
(1) Choose 1<b<n, and compute
b"™! =a mod n,
fa=1,
then output “n is composite”.
(2) repeat (1) k times.
(3) output “n may be prime”.
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» Remark:

1.1f the output of the method is “n iIs composite”, the n
must be composite

2.If k Is increased, then the probability that
“n Is composite” is decreased.

s Question: If k — oo, does the probability = 0?

Or 3 composite integers n — b"™1=1 mod n,
b with (b, n) =1?
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= |Def.A composite integer that satisfies b™'=1 mod n,
beZ* and (b,n)=1, is called a Carmichael number

Ex: Prove that 561 = 3x11x17 is a Carmichael number.

Proof:
Let b € Z* with (b,561)=1. Then (b,3)=(b,11)=(b,17)=1
= b’=1mod 3,b""=1mod 11, b'*® =1 mod 17,

|560,10]560, and 16|560,

= b°>69=1 mod 3, b>%°=1 mod 11, b°>%9=1 mod
= b°>%0=1 mod 561, Vb with (b,n)=1.

= [tis conjectured that there are infinitely many
Carmichael numbers, but so far this has not been
demonstrated. 6-18



i Conditions for producing Carmichael number

s [Thm:Ifn= , where g 1s
and g #q;, V1<I,]<Kk,
and (g.-1)|(n-1), V j.
Then n i1s a Carmichael number.
s Proof.Let beZ* and (b, n)=1, then (b, g)=1,1< <Kk

b ™t =1modq,1<j<k

(g-1|(n-1) = b =1modqg,1<j<k
By CRT, we see that b™! =1 mod n
= n is a Carmichael number.
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» Remark:

All Carmichael numbers must be of the form

n=4q,4,...94
where the g;'s are distinct primes and

(9,-1)|(n-1),
1<j<Kk.
[Proof is shown in chapter 8]
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i- Let n be an odd integer.

If b-1=1 mod n, then n is either a prime
or a pseudoprime to the base b.

If nis a prime, then b™Y2 = +1 mod n
If nis a pseudoprime to the base, then it’s possible
that b(™D/2 >« +1 mod n

n. odd | Randomly choose b,1<b <n-1
' If b2 2 +1 mod n
then n is composite
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Def. Let neZ* and n-1=25t, where s, t eZ* and t is odd.
We say that n passes Miller’s test for the base b,
if either bt =1 (mod n) or b2t = -1 mod n for
some jwith 0 < < s-1.

Thm: If nis prime and b Is a positive integer with ntb,
then n passes Miller’s test for the base b.

Proof.Let n-1=25t, where s,teZ*and t is an odd integer
Let x,= p /2 _p=*t | fork=0,1,2,...,s
.’nis prime, x,=b"*=1 mod n.
X,°=X,=1 mod n=X,=1 mod n or x,=-1 mod n
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If X,=-1 mod n=n passes Miller’s test for the
base b.

If x;=1 mod n then x,°=x,=1 mod n=X,=1 or
X,=-1 mod n.

In general, If X,=x;=...=X,=1 mod n, with k<s,
we know that either x,,,=-1 mod n or x,,,=1
mod n.

Continuing this procedure for k=0,1,2,...,s, we
find that either x,=1 mod n for k=0,1,2,...,s, or
X,=-1 mod n for some integer k. n passes

Miller’'s test for the base b.
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i = | Def: If n Is composite and passes Miller’s test for the
base b, then we say n is a strong pseudoprime
to the base b.

= | Thm: There are infinitely many strong pseudoprimes
to the base 2.

Proof Strategy:
If n Is a pseudoprime to the base 2, then
2"-1 I1s an pseudoprime and a strong pseudoprime

to the base 2.
= Proof: If nis composite and 2"1=1 mod n,2"-1-1=nk,
keZ* and k is odd. N-1=(2"-1)-1=2"-2=2nk.
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Note that 2(N-D/2=2nk=(2Mk=1 mod N
(.°2"=(2"-1)+1=N+1)

there are infinitely many strong pseudoprimes

to the base 2.

=| Thm: If nis an odd composite positive integer, then n
passes Miller’s test for at most (n-1)/4 bases b,
with 1 < b < n-1. (will be proven in chapter 8)
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Thm: Rabin’s probabilistic primality test.

Letn € Z* and n is odd.

Pick k different positive integers less than n and
perform Miller’s test on n for each of these bases.

If n Is composite, the probability that n passes all k
tests is less than (1/4)k.

Complexity: O((log,n)?)

Generalized Riemann hypothesis (a famous
conjecture): Deterministic primality test

Conjecture: For every composite positive integer n,
there is a base b with b < 2(log,n)? such that n fails
Miller’s test for b.

b-Z6b




s Thm: If the generalized Riemann hypothesis is valid.
Then there is an algorithm to determine whether
a positive integer n is prime using O((log,n))

bit operations.

= Proof: Miller's test needs O((log,n)3) bit operations
1<b<2(log,n)?, we need O((log,n)?) Miller’s
tests.

We need O((log,n)°) bit operations to
determine whether n is composite or prime.
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= Important facts:
To factor n needs subexponential time.
To determine n is prime needs polynomial time.
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i 6.3 Euler's Theorem

Def. Let neZ* ,the Euler phi-function ¢#(n) is defined
to be the number of positive integers not
exceeding n that are relatively prime to n.

s EX:¢(10) =4
1,3,7,9 (less than 10) are relatively prime to 10.

Note: Compared with wt(x),
defined in “3.1 Prime numbers.”
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= | Def. A reduce residue system modulo n is a set of
#(n) integers, such that each element of the set
IS relatively prime to n, and no two different
elements of the set are congruent modulo n.

s S={a,,8,...,84y} Where (a,n)=1, 1< 1 <¢(n)
and &, # a mod n
= Note: |s| = ¢(n)
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| Thm LetS:{ y y saay ¢(n)}
be a modulo n.
If (a,n)=1, aeZ*, then the set

s' ={ar,, ar,, ..
is also a reduced resférue system modulo n.

s Proof:(a,n)=1and(r,n)=1
= (ar,n)=1,]=1,2,...,4(n)
= ar,zarmodn,j=#l.

So s’ is a reduced residue system modulo n.
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i Euler's Theorem

s ([Thm: If m e Z*and a € Z with (a, m) =1, then
aMm =1 mod m.

= Proof:
Lets={r, 1, ..., rymtand s’ ={ar;, ar,, ..., ar,}
be two reduced residue system modulo m, where
(a,m) =1, then
¢(m) $(m $(m)

H ar _a¢(m)Hr mod m

j=1 j=1 =1
#(m)
(J]r,m)=1=a’™ =1mod m
=1
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Remark:

. If m is prime, then Euler’'s Theorem is equivalent to
Fermat'’s Little Theorem.

f (a, m) = 1,then a1 = a#"-1 mod m
. If (a, m) =1, the solution of ax =b mod m is
X =a/m-1p mod m

Problem: Given m, how can we find ¢(m)?
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