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3.1 Prime numbers
• Def: Prime p satisfies 

(a) p > 1, and p  Z+

(b) If a|p then a = 1 or p
• Def: n is a composite if

(a) n > 1, and n  Z+

(b) n is not prime
• Lemma: Every positive integers greater 

than one has a prime divisor.
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• Thm: There are infinitely many primes.
• Proof: 

Let n be the largest prime and Qn = n!+1.
Then Qn has at least one prime divisor qn and qn > n.
(If qn < n, then qn|n!, and then qn|(Qn - n!)=1, impossible.)

So, we have found a prime qn larger than n, n.
 there must be infinitely many primes.

• Thm: If n is a composite integer, then 
n has a prime factor not exceeding n
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• Goal: Find all the primes
less than or equal to a given positive integer n.

• Steps: 
(1) List all integers  n
(2) Line out the integers 

that can be divided by all the primes 
less than or equal to       

Ex: Find all the primes  20
(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(2) Since   = 4 and the primes less than 4 are 2 and 3. 

We line out the integers that can be divided by 2 and 3.

n

The Sieve of Ero*tosthenes

20
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• The complexity of Sieve of Eratosthenes is O(    ).
• The prime distribution:

Facts:
(1) They become rarer and rarer the larger they get.
(2) Apart from this regularity in their mean density,

their distribution seems rather irregular.

Ex: Show that the approximate probability W(x) that x is 
a prime satisfies W(x)  1/lnx

Proof: 
Assume that divisibility by different prime is 
independent.(Note that is not true!)

n
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Then W(x)  (1-1/2)(1-1/3)... 

∵ ln(1-)  - if <<1

(a given term 1/n in the sum 
occurs with probability W(n))  

Let A(x) = 1/W(x),i.e. A(X) is the average distance. 
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Then lnA(x)=              

Ex: x = 20. ln20  3. The average spacing of the primes 
closest to 20 is 3. Check(17,19,23)                                

2   4     
x = 150, ln150  5
x = 1050, ln1050 115
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• Def: The function (x), x Z+, 
denotes the no. of primes
not exceeding x.

• Ex: (10) = 4, (100) = 25
Q: (20) = ?, (30) = ?
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 Complexity of showing n is a prime
by the Sieve of Eratosthenes: 
Given n, there are approximately                 primes not 
exceeding       . 
To divide n by an integer m takes O(log2nlog2m) bit 
operations. 
So, we need                                            bit operations 
Therefore, the complexity is O(    ) 
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Estimation of (x)

1. By Gauss(1793): (x)  x / lnx (1)

2. By Legendre(1778): (x)  x / (lnx-1.08366) (2)

• (2) is better than (1), if x < 4 x 106

• (2)  (1), if 4 x 106 < x < 5 x 106

• (1) is better than (2), if x > 5 x 106

3.2 The Distribution of Primes
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3. (x) 
4. By Riemann 

Thm:
• Conjectured by Gauss in 1793 and be proven by 

Hadamard and Vall’ee-Poussin in 1896.
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• Thm: For any n Z+, there are at least n
consecutive composite positive integers.

Proof: Consider the n consecutive positive integers, 
(n+1)!+2, (n+1)!+3, …, (n+1)!+(n+1)

Since j|(n+1)!,  2  j  n+1,
these n consecutive integers are all compositive.

.
• Def: Twin primes: 

Pairs of primes differ by two.
Ex: 5 and 7,11 and 13, 101 and 103, 4967 and 4969.

• Goldbach’s conjecture
Every even positive integer greater than two 
can be written as the sum of two primes.
Ex:100=3+97=11+89=17+83=29+71=41+59=47+53
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3.3  Greatest Common Divisor
Def : If  a, b  Z and a  b  0, then (a, b) is the largest

integers which divides both a and b. (0, 0) = 0
Def : Let  a, b  Z, then a and b are called relatively  

prime if (a, b) = 1.

Thm: If  a, b, c  Z with (a, b) = d, then 
(i)   (a/d, b/d) = 1
(ii)  (a+cb, b) = (a, b).

• Special case:
Let c = - [a/b] = -q
and   a+cb = a-qb = r, 0  r < b-1, then 
(r, b) = (a, b).
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proof:
(i) Let e = (a/d , b/d) , then  k, l  Z with 

a/d = ke and b/d = le  a = dek and b = del. 
 de|a and  de|b
Since  (a, b) = d ,  de  d  e = 1. 

(ii) →Let e  Z,  e|a and e|b,then e|( a+cb)..
By  Thm1.8…so,  e|(a+cb) and e|b.

→Let f  Z ,  f|(a+cb) and f|b,then 
f|(a+cb) - cb = a.       f|a and f|b.
Hence (a+cb, b) = (a, b)
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Def : If a, b  Z , then a linear combination of a and b is   
the sum of the form  ma + nb, where m, n  Z.

Thm : Let  a, b  Z and a  b  0, then (a, b) is the    
least  positive integer that is a linear combination    
of  a and b.

proof: Let d be the least positive integer of linera
combination and d = ma + nb, where m, n  Z.
We must show (i)  d|a and d|b

(ii) if c|a and c|b, then c|d.
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(i) By the division algorithm, a = dq+r , 0  r < d, then
r = a-qd = a-q( ma+nb ) = ( 1-qm )a-qnb
r is a linear combination of a and b,   0  r < d ,
and  d is  the least positive linear combination 
of a and b.
So, r = 0     d|a.Similarly, d|b.

(ii) Let c|a and c|b,  d = ma+nb,we have  c|d.  #

Def:  ( a1, a2, ...., an ) is the largest integer which is the  
largest common divisor of a1, a2, .... , an.
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Lemma:  
(a1, a2, .... , an-1, an ) = (a1, a2, ... , an-2, (an-1, an))
This Lemma shows a recursive way to find (a1, a2, ...,
an ) by using  n - 1  times of evaluating (a, b).

Ex: Find (105, 140, 350).
<Sol>:  

(105, 140, 350) = (105, (140, 350)) = (105, 70) = 35.

Def:The integers a1, a2 , ... , an are called mutually  
relatively prime if  (a1, a2, ..., an) = 1.

Def: The integers a1, a2 , ... , an are called pairwise
relatively prime if (ai, aj) = 1,  i  j.
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<Note>: If the integers are pairwise relatively prime, 
they must be mutually relatively prime.  
However, the converse is false.

Ex :  (15, 21, 35) = (15, 7) = 1,  they are mutually 
relatively prime but not pairwise relatively prime.

Def : Coprime : a and b are coprime if (a, b) = 1.

• Coprime probability  0.608 
Proof:         

Let w2 be the prob. that (a, b) = 1, where a and b
are chosen from a large range randomly and 
independently.

補充
教材
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Given prime  pi, the prob. that pi|a is        .
The prob. that  both pi|a and pi|b is approximately        .   
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• The prob. that a randomly selected integer n is 
“Square free” is 

• The prob. that (a1, a2, ..., an) = 1 is                      , 
where ai are randomly selected                        
Ex : w2  0.608, w3  0.832, w4  = 0.9239.

• The prob. that a1, a2 , ... , ak are pairwise coprime is 

For k = 3, the prob. is about 0.28.   
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3.4 The Euclidean Algorithm
A systematic method to find the GCD of two 
positive integers

Lemma : If c, d Z and c = dq + r, where q, r Z, 
then (c, d) = (d, r).

<proof>:
(1) ∵ r = c - dq,  if  e|c and e|d, then e|r.
(2) ∵ c = dq + r, if  e|d and e|r, then e|c.   

 (c, d) = (d, r)
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Thm : The Euclidean Algorithm
Let r0 = a, r1 = b be integers  a  b > 0. If the 
division algorithm is successively applied to 
obtain rj = rj+1qj+1+ rj+2 , with 0 < rj+2 < rj+1 , for  j = 
0, 1, ..., n - 2 and rn+1= 0, then (a, b) = rn (the 
last nonzero remainder.)

<proof>: Since            r0 = r1q1 + r2 0  r2 < r1
r1 = r2q2 + r3 0  r3 < r2

rj-2 = rj-1qj-1+ rj 0  rj < rj-1

rn-2= rn-1qn-1+ rn 0  rn < rn-1
rn-1= rnqn

…
…
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we will obtain a remainder of zero since a = r0 > r1 > ...  0
 (a, b) = (r0, r1) = (r1, r2) = ... = (rn-2, rn-1) = (rn-1, rn) = (rn, 0) = rn

Ex : Find (252, 198).
<sol>:   252= 198  1 + 54 2 252 198

198=   54  3 + 36 3 126          99
54=   36  1 + 18 3 42          33
36=   18  2                                           14          11

(252, 198)=18                    (252, 198) = 2  3  3 =18
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• Thm: Let fn+1 and fn+2 be the successive terms of the 
Fibonacci sequence with  n > 1. Then the 
Euclidean Algorithm takes exactly n divisions
to show that (fn+1, fn+2) = 1.

<proof>:
∵ f j = f j-1+ f j-2 , we have 

fn+2 = fn+1 + fn
fn+1 = fn + fn-1

f3 = f2  2    
 It takes exactly n divisions to show (fn+1, fn+2) = f2 = 1.         
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• Complexity of the Euclidean Algorithm

Thm : (By G. Lame’ 1845)
The number, T(b), of divisions needed to find (a, b), 
a > b, using the Euclidean Algorithm satisfies 
T(b)  5log10b.
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<Proof.>
From the proof of the Euclidean Algorithm, 

r0 = r1q1 + r2 0  r2 < r1
r1 = r2q2 + r3 0  r3 < r2

rn-2= rn-1qn-1+ rn 0  rn < rn-1
rn-1= rnqn

we have used T(b) = n divisions to find (a, b). 
Note that qi  1 (1  i  n – 1) and qn  2, since rn < rn-1.

…
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Therefore,     rn  1 = f2
rn-1  2rn  2f2 = f3
rn-2  rn-1 + rn  f3 + f2 = f4

r2  r3 + r4  fn-1 + fn-2 = fn

b = r1  r2 + r3  fn + fn-1 = fn+1 >αn-1 (α=          )      

 log10b > (n-1)log10α > (n-1)/5 (∵ log10α> 1/5)

 n-1 < 5log10b  T(b) < 5 log10b ■

2
51 

…
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[Note] This is the worst case for T(b), in average,                

[Corollary]
The number of bit operations needed to find (a, b)
with a > b is O((log2b)3).

•Given a and b, how to find sn and tn  (a, b) = sna+ tnb?

bbbT 102 log9405.1)ln(2ln12)( 

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Thm :  Let a and b be positive integers. Then
(a, b) = sna+ tnb (for n = 0, 1, 2, ...) 
where sn and tn are the nth terms of the sequences 
defined recursively by 

s0 = 1, t0 = 0
s1 = 0, t1 = 1

and 
sj = sj-2 – qj-1sj-1 , tj = tj-2 – qj-1tj-1 (for j = 2, 3, ..., n) 

where qj are the quotients in the divisions of the 
Euclidean Algorithm when it is used to find (a, b).
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[pf Hint] If we can prove that rj = sja + tjb for j =1,2, ... ,n ,
then since (a, b) = rn, we have (a, b) = sna + tnb.

[Proof] By induction,
(i)  j = 0  is true, a = r0 = 1  a + 0  b = s0a + t0b

j = 1  is true, b = r1 = 0  a + 1  b = s1a + t1b
(ii) Assume that  rj = sja + tjb, for j = 1, 2, ..., k-1

∵ rk = rk-2 – rk-1q k-1
(in the kth step of  E.A.)

Then  rk = (sk-1a + tk-2b) - (sk-1a + tk-1b)qk-1
= (sk-2 – sk-1qk-1)a - (tk-2  – tk-1q k-1)b
= ska + tkb
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[Note] (a, b) can be expressed in an infinite no. of   

different ways as a linear combination of a

and b.

Since if  (a, b) = d and d = sa + tb, then 

d = (s + k(     ))a + (t - k(     ))b , k  Z.
d
b

d
a
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3.5 The Fundamental Theorem of 
Arithmetic

Lemma : Let a, b, c Z+. If (a, b) = 1 and a|bc, then a|c.
<proof>: Since (a, b) = 1,  s and t  sa + tb = 1. 

 sac + tbc = c. If a|bc, then a|sac + tbc = c. ■

Lemma : If p|(a1a2...an),
where p is a prime and ai  Z+,  i, 
then  i with 1  i  n,  p|ai.

<proof>:  (1) It is true for n = 1.
(2) Assume that it is true for n.    
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If p|(a1a2...anan+1), then
p|(a1a2...an)  an+1. 

From above Lemma,
either p|(a1a2...an) or p|an+1

 p|ai for some i with 1  i  n + 1. ■

Thm: Let n  Z+, pi's are primes, then n can be written 
uniquely as n = p1

t1p2
t2…pm

tm with pi < pj if i < j and 
ti  0 
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<proof>:
[Existence] (1) By contradiction, assume that n is the 
smallest number that cannot be written as the 
product of primes. If n is prime, then the Thm is true. 
So n must be composite. 
Let n = ab, 1 < a < n and 1 < b < n. But since a, b < n,  
a, b must be the product of primes. Then since n = 
ab, n is also a product of primes. This is 
contradiction.
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[Unique] (2) If  n = p1p2…ps = q1q2…qt, 
where pi , qi are primes, pi  qi ,  1  i  s, 1 j  t, 
with p1  p2  …  ps and q1  q2  ...  qt . 
Remove all common primes from both sides, 
pi1pi2…piu = qi1qi2…qiv , u  1, v  1.

However, it is a contradiction of above Lemma, since 
pil must divide qij for some j, which is impossible,since 
each qij is a prime and is different from pil, the prime 
factorization of n is unique. 
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Def: The least common multiple lcm(a,b) of a and b, where a, 
b  Z+, is the smallest positive integer that is divisible 
by a and b.

Fact: (1)Let a =                   , b =                   , where pi is a  
prime i, and min(ai, bi) denote the minimum of ai

and bi. Then

(2)Let max(ai, bi) denote the maximum of ai and bi,
Then
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Lemma: If x, y R, then max(x, y) + min(x, y) = x+y.

Thm: If a, b  Z+, them               

or  ab = lcm(a, b)gcd(a, b). 
<proof>:
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Lemma: Let m, n Z+ and (m, n) = 1, if d|mn, then
 d1, d2  Z+  d1|m and d2|n and d = d1d2. 
Conversely, if d1|m and d2|n , then d|mn, where 
d = d1d2.

Thm 2.9: Dirichlet’s Theorem on primes in
Arithmetic Progression(1837)

Let a, b Z+ and (a, b)=1, then an + b, n = 1,2,…
contains infinitely many primes.

Lemma: If a and b are integers both of the form 4n+1, 
then ab is also of the form.

<proof>: Let a = 4r+1, b = 4s+1, then      
ab = (4r+1)(4s+1) = 16rs + 4r + 4s + 1

= 4(4rs+r+s) + 1 = 4k+1 ■
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Thm 2.10: There are infinitely many primes of the form 
4n+3, where n Z+.

<proof>: By contradiction. Assume that there are only  
finite no. of primes of the form 4n+3, say, 
p0=3, p1, p2, …, pr.
Let Q = 4p1p2…pr + 3, then  a prime q, q|Q
and q is of the form 4n+3. (If all these primes
are of the form 4n+1, the Q must be the form 
4n+1). But none of the primes p0, p1,…, pr
divides Q.
Hence, there are infinitely many primes of the 
form 4n+3.
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Thm 2.11: Let  be a root of the polynomial 
xn = cn-1xn-1+…+c1x+c0  where the coefficients  
c0, c1, …, cn-1Z with c0  0. Then  is either 
an integer or an irrational number.

<proof>: Suppose  is rational, then  = a/b, where 
(a, b) = 1 and b  0.Since 
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It implies that b|an, since (a, b) = 1. 
It is impossible, Unless b = 1
If  is rational then  = a, so 
that   must be an integer.

Ex: Let a be a positive integer that is not the m-th 
power of an integer. So that        is not an 
integer.Then    is irrational.
(Note: a is the root of xm – a.)

m a
m a
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3.6 Factorization methods and 
the Fermat numbers

To factor n by the sieve of Erotosthenes, it needs
divesions. So, the complexity is 

O(      (logN)2) = O(   (logN)2) bit opetations.

<Note>: The fastest method (the so-called number 
field sieve) to factor N needs

bit operations ))log(log)exp((log 3
2

3
1

NN

N
N N
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Table2.1 Time Required for factorization of N (1992)

no. of decimal digits     no. of bit opetation            Time
50                       1.4 x 1010 14   sec   
75                       9.0 x 1012 3   hours

100                       2.3 x 1015 26   days
200                       1.2 x 1023 3.8 x 105   years
300                       1.5 x 1029 4.9 x 1021 years
500                       1.3 x 1038 4.2 x 1032 years 

Assume the speed is 109 bit opetations per second. 
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Fermat factorization
Lemma: If n Z+ and n is odd, then 
 a one-to-one correspondence between 
factorizations of n into two positive integers and 
difference of two squares that equal n. 

i.e., n = ab = s2 - t2
Proof. Let n = ab, where a, b Z+ , then 

■

Then we can factor n by n = (s - t)(s + t).
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Algorithm:
Look for solutions of the equation n = x2 - y2 by 
searching for perfect squares of the form x2 - n, 
i.e., search

t2 - n, (t+1)2 - n, (t+2)2 - n
where t is the smallest integer greater than    .

• This procedure is guaranteed to terminate. Since

• Complexity:                 steps.
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• The Fermat numbers
Def:                 are called the Fermat numbers.

• F0=3, F1=5, F2=17, F3=257, F4=65537=216+1 are primes
but F5=232+1 is composite

Ex: 641|F5

<sol>: Since 641 = 5·27 + 1 = 24 + 54

 F5 = 232 + 1 = 24 ·228 + 1 = (641 - 54)·228 + 1
= 641·228 - (5·27)4 + 1 = 641·228 - (641 - 1)4 + 1
= 641(228 - 6413 + 4·6412 - 6·641 + 4)

 641|F5

122 
n

nF
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Thm: Every prime divisor of              is of the form 
2n+2k+1. 

Ex: Show that F3 = 257 is prime.
<Sol> If  a prime p|F3 then p must be of the form 

2n+2k+1=25k+1=32k+1. Since there is no such a 
prime           . F3 is prime.

Ex: Factor F6 = 
<sol>:If p|F6,then p is of the form 28k+1 = 256k+1.

Search primes of the form that p .
We find (256  1071 + 1) = 274177|F6.

122 
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nF
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Lemma: F0F1…Fn-1 = Fn-2.

Proof.

By induction,

it is true for n = 1, since F0 = 3 = 5-2 = F1-2.

Assume that it is true for n, then

F0F1…Fn-1Fn = (F0F1…Fn-1)Fn=(Fn-2)Fn

= =    =               =Fn+1 – 2. ■)12( 2 
n

1)2( 22 
n

2)12(
12 
n

)12( 2 
n
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Thm: (Fm, Fn) = 1 m, n  0 and m  n.
Proof.

Assume m < n. 
Let d|Fm, and d|Fn.
Since F0F1…Fn-1 = Fn-2,

d|Fn - F0F1…Fm…Fn-1 = 2
 d = 1 or 2. 

But Fm and Fn are odd,
 d = 1 = (Fm, Fn)  ■
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n| 2n-2 iff n is prime.

2| 22-2
3| 23-2 4 | 24-2=14
5| 25-2
7| 27-2

341| 2341-2

2n-1 if n is prime. 

補充
教材
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3.7 Linear Diophantine Equations
Problem: Given a, b, c Z, we want to find the solutions  

for ax + by = c,  x, y  Z

(i) Is there any solution?
(ii)If there are solutions, how many solutions?

(a) exactly one? (b) infinitely?
(c) how many solutions  x, y  Z

Def: ax + by = c, where a, b, c  Z, is called a linear 
Diophantine equations in two variables.
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Thm: Let a, b Z and d = (a, b). Then ax + by = c
(1) has no integral solutions if d | c.

(2) If d|c, then there are infinitely many integral solutions.

(3) If (x0, y0) is a particular solution, 

then all solutions are given by

x = x0 + ( )n , y = y0 - ( )n, where n Z.
d
b

d
a
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Proof.
(i) If x, y Z and ax + by = c, then 

∵ d|a and d|b
 d|c.

(ii) Assume that d|c, then 
 s, t, e  Z  d = (a, b) = as+bt and de = c
 c = de = (as+bt)e = a(se)+b(te)
 One solution is given by x = x0 = se, y = y0 = te.

 there are infinitely many solutions.
cbyax
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(iii)Suppose x, y Z,  ax + by = c
∵ax0 + by0 = c  a(x - x0) + b(y - y0) = 0

 a(x - x0) = b(y0 - y)
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Ex: Find solutions for 15x + 6y = 7
∵(15, 6) = 3 and 3 | 7
 no solutions.

Ex: Find solutions for 21x + 14y = 70
∵(21, 14) = 7 and 7|70
 infinitely many solutions.
By Euclidean Algorithm, we can find

1  21 + (-1)  14 = 7
10  21 + (-10)  14 = 70

therefore,all solutions are given by
x = 10 + 2n, y = -10 - 3n
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Ex: Find x, y  Z+, 20x + 50y = 510, x, y  0.
<sol>: Since (20, 50)=10 and 10|510, 

 there are solutions.
By Algorithm, we have
20(-2) + 501 = 10  20(-2  51) + 50(1  51) = 510
 x0= -102, y0 = 51  x = -102 + 5n and  y = 51 - 2n
But x, y  0  -102+5n  0 and 51-2n 0

 n = 21, 22, 23, 24 or 25.
(x, y) = (3, 9), (8, 7), (13, 5), (18, 3) or (23,1).

2
125  and  

5
220  nn
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Thm: If a1, a2, …, an  Z+, then 
the equation a1x1 + a2x2 + … + anxn = c
has integral solution iff d = (a1,a2,…,an)|c. 
Moreover, when there is a solution, 
there are infinitely many different solutions.

<proof>:
(i)If  x1, x2, …, xn  a1x1 + a2x2 + … + anxn = c
∵d|ai,  1  i  n,  d|c.
Hence, if d | c,  no solution.

(ii)By induction, it is true for n = 2, 
(∵a1x1 + a2x2 = c has ∞ solutions if d|c)
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Assume there are ∞ solutions for n, we want to prove 
that a1x1+…+anxn+an+1xn+1 = c has ∞ solutions if d|c.

Since anxn + an+1xn+1 = (an, an+1)y,  y Z.
 a1x1 + … + an-1xn-1 + (an,an+1)y = c
∵ d = (a1, …, an, an+1) = (a1, a2, …, an-1, (an, an+1))
If d|c  a1x1 + … + anxn + an+1xn+1 = c has ∞ solutions.



3-60

• Given a1,a2,...,an  Z+ and x1,x2,…,xn  Z+

find s = a1x1+a2x2+…+anxn → easy

• Problem: 
Given a1,a2,…,an  Z+ and s
find x1,x2,…,xn  s = a1x1+a2x2+…+anxn → hard

• Knapsack Problem: x1,x2,…,xn  {0,1}.


