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i 3.1 Prime numbers

e Def: Prime p satisfies
(@ p>1andp e Z*
(b) Ifajpthena=1orp
e Def: nis a composite If
(@n>1,andn e Z*
(b) n Is not prime
 Lemma: Every positive integers greater
than one has a prime divisor.
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 Thm: There are Iinfinitely many primes.
* Proof:
Let n be the largest prime and Q,, = n!+1.

Then Q, has at least one prime divisor g, and ¢,, > n.
(If g, < n, then g,|n!, and then q,|(Q, - n!)=1, impossible.)

So, we have found a prime q,, larger than n, ¥n.
.. there must be infinitely many primes.

 Thm: If n is a composite integer, then
n has a prime factor not exceedingy/n
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iThe Sieve of Ero*tosthenes

e Goal: Find all the primes
less than or equal to a given positive integer n.
o Steps:
(1) List all integers <n
(2) Line out the integers
that can be divided by all the primes
less than or equal tovn

Ex: Find all the primes < 20

(1)1234567891011121314151617 181920

(2) Since ¥20] = 4 and the primes less than 4 are 2 and 3.
We line out the integers that can be divided by 2 and 3.
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 The complexity of Sieve of Eratosthenes is O(/n ).
* The prime distribution:
Facts:
(1) They become rarer and rarer the larger they get.
(2) Apart from this regularity in their mean density,
their distribution seems rather irregular.

Ex: Show that the approximate probability W(x) that x Is
a prime satisfies W(x) ~ 1/Inx

Proof:
Assume that divisibility by different prime is
iIndependent.(Note that is not true!)
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1
Then W(x) ~ (1-1/2)(1-1/3)... » 114=7)

pI<X

INW (x) = Z|n(|_pi)

1
) _;;xp—i o In(l-g) = -e if e<<1
5 W (n)
n (a given term 1/n in the sum

<[ W (")gn occurs with probability W(n))
2 n

~S

Let A(X) = 1/W(x),l.e. A(X) Is the average distance.
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x 1
Then INARX)=, jamm

AI(X)z L or A'(x)zi
A(X)  XA(X) X

— A(X) ~ In(X) =W (x) z%

Ex: x = 20. In20 = 3. The average spacing of the primes
closest to 20 is 3. Check(17,19,23)
NS

2 4
X =150, In150 = 5

X =100, In10°0~115
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e Def: The function n(x), X €Z*,
denotes the no. of primes
not exceeding X.

 Ex: n(10) =4, n(100) = 25
Q: n(20) = ?, n(30) = ?
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» Complexity of showing n is a prime
the Si ;
by e Sieve of Eratosther_les hoa
Given n, there are approximately |, 7 =7, primes not
exceeding vn .

To divide n by an integer m takes O(log,n-og,m) bit
operations.

So, we need %(clog2 In|log, |m|)~c+/n bit operations
Therefore, the complexity is O(vn)
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i 3.2 The Distribution of Primes

Estimation of n(X)

1. By Gauss(1793): n(x) =~ x / Inx (1)

2. By Legendre(1778): n(x) = x / (Inx-1.08366) (2)
e (2)is better than (1), if x <4 x 10°
e (2)~(1),if4x105<x<5x106°
* (1) is better than (2), if x >5 x 10°
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3. 7Z'(X) 2F_LI(X)
4. By Riemann

7(X) ~ Li(x)—lLi(&)—%Li(i/;)—...

> Thm: lim #(x)/; =1

X o0 log X
« Conjectured by Gauss in 1793 and be proven by

Hadamard and Vall'ee-Poussin in 1896.

3-12



i Thm: For any n €Z*, there are at least n

consecutive composite positive integers.
Proof: Consider the n consecutive positive integers,
(n+1)!1+2, (n+1)!+3, ..., (n+1)!+(n+1)
Since j|(n+1)!, V 2 < < n+l,
these n consecutive integers are all compositive.

. Def: Twin primes:
Pairs of primes differ by two.
Ex:5and 7,11 and 13, 101 and 103, 4967 and 49609.

» Goldbach’s conjecture
Every even positive integer greater than two
can be written as the sum of two primes.

Ex:100=3+97=11+89=17+83=29+/71=41+59=4/7+53
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3.3 Greatest Common Divisor

Def:If a,b e Zand a=Db =0, then (a, b) Is the largest
Integers which divides both aand b. (0, 0) =0

Def . Let a, b € Z, then a and b are called relatively
prime if (a, b) = 1.

Thm: If a, b, c € Z with (a, b) =d, then
(i) (a/d,b/d)=1
(i) (atcb, b) =(a, b).

e Special case:
Let c = - [a/b] = -q
and atcb=a-gb=r,0<r<Db-1, then
(r, b) = (a, b).
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proof:
(i) Lete = (a/d, b/d) , then 3 k, | € Z with
a/d = ke and b/d =le = a =dek and b =del.
-. de|la and de|b
Since (a,b)=d, ...de< d = e=1.

(i) —Let e € Z, > e|la and e|b,then e|( a+cb)..
By Thm1.8...so, e|(at+cb) and e|b.
—Letf e Z, > f|(at+cb) and f|b,then
fl(a+cb) - cb = a. fla and f|b.
Hence (a+cb, b) = (a, b)
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Def:lfa, b e Z, then alinear combination of a and b is
the sum of the form ma + nb, wherem, n € Z.

Thm:Let a,b e Zand a=b =0, then (a, b) is the
least positive integer that is a linear combination
of aand b.

proof: Let d be the least positive integer of linera
combination and d = ma + nb, where m, n € Z.
We must show (i) d|a and d|b
(1) if c|]a and c|b, then c|d.
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(i) By the division algorithm, a = dqg+r, 0 <r <d, then
r=a-gd = a-g( ma+nb ) = ( 1-gm )a-qnb
ris a linear combinationofaand b, 0<r<d,
and d is the least positive linear combination
of a and b.
So,r=0 d|a.Similarly, d|b.

(i) Let c|la and c|b, .. d = ma+nb,we have c|d. #

Def: (a;, a,, ...., a,) Is the largest integer which is the
largest common divisor of a,, a,, ...., a,
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Lemma:
(a11 a2! Pty an-li an) — (al’ a2! i) an-2! (an-17 an))

This Lemma shows a recursive way to find (a,, a,, ...,
a,) by using n-1 times of evaluating (a, b).

Ex: Find (105, 140, 350).
<Sol>:
(105, 140, 350) = (105, (140, 350)) = (105, 70) = 35.

Def:The integers a,, a, , ..., a, are called mutually
relatively prime if (a,, a,, ..., a,) = 1.

Def: The integers a;, a, , ..., a, are called pairwise
relatively prime if (&, &) = 1, V 1 #].

3-18




+

<Note>: If the integers are pairwise relatively prime,
they must be mutually relatively prime.
However, the converse is false.

Ex: (15, 21, 35) = (15, 7) = 1, .. they are mutually
relatively prime but not palrW|se relatively prime.

;;;L Def : Coprime : a and b are coprime if (a, b) =1
e Coprime probability =z 0.608
Proof:
Let w, be the prob. that (a, b) = 1, where aand b
are chosen from a large range randomly and
iIndependently.
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1
Given prime p;, the prob. that pja is —

1
The prob. that both p;|a and p,|b Is ap|brOX|mater— .
H (1——)
ori; 11 :H(1+ 12+ 14+ )
W5 Pi (1— 2) Pi P P
g1
- “~n* 6

é\‘m

= 0.608 (for large primes)
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The prob. that a randomly selected integer n is

“Square free” is 1— iz

P 1

PPN = (1- 2y —(1- 1) =1- 4

i P P; P, 1
The prob. that (a, a,, ..., a,) =1is W, = > — &
where a, are randomly selected -t
Ex:w,=0.608, wy;=0.832, w,= 99 = 0.9239.
The prob. thata,, a,, ..., a, are palrW|se coprime is

]_[[(14)k (1=

For k = 3 the prob. is about 0.28.
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!L 3.4 The Euclidean Algorithm

A systematic method to find the GCD of two
positive integers

Lemma:lfc,d eZandc=dqg+r, whereq,r eZ,
then (c, d) = (d, r).

<proof>:
(1) ."r=c-dq, if elcand e|d, then e]r.
(2) "."c=dg+r, if e|ldand e|r, then e|c.
= (c,d)=(d, r)
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Thm : The Euclidean Algorithm
Letr,=a, r,=b beintegers>a=>Db > 0. If the
division algorithm is successively applied to
obtain r; = r;,Qj,1+ fip, With O <1, <71y, , fOr | =
0,1,..,n-2andr,,=0, then (a, b) =r, (the
last nonzero remainder.)

<proof>: Since =10+ 15 0<r,<r
1 =10, 13 O<rz<rn

f2 = 10t T, 0 < r<fr

rn-2: rn-lqn-1+ rn O < rn < rn-1
rn-1: rnqn
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we will obtain a remainder of zero sincea = ry,>r;>...>20
so(@ b)) =(rg, 1) = (ry, 1)) = oo = (Mo Mg) = (e 1) = (R, 0) =1

Ex : Find (252, 198).

<sol>: 252=198 x 1 + 54 2 | 252 198
198= 54 x 3 + 36 3 [126 99

54= 36 x 1+ 18 3 |42 33

36= 18 x 2 14 11

(252, 198)=18 (252, 198) = 2 x 3 x 3 =18
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| Thm: Letf ,, and f_,, be the successive terms of the
Fibonacci sequence with n > 1. Then the
Euclidean Algorithm takes exactly n divisions
to show that (f,,,, f..o) = 1.

fa=1, x 2

.. It takes exactly n divisions to show (f,,,, f.0) =, = 1.
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o Complexity of the Euclidean Algorithm

Thm : (By G. Lame’ 1845)
The number, T(b), of divisions needed to find (a, b),
a > b, using the Euclidean Algorithm satisfies

T(b) < 5log,,b.
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<Proof.>

From the proof of the Euclidean Algorithm,
o =10, + 15 0<r,<r
1 =10, + 13 O<rz<r,

rn-2: rn-lqn-1+ rn 0< rn < rn-l

I’n-1: rnqn
we have used T(b) = n divisions to find (a, b).
Notethatg;>1 (1< i<n-1)andq,>2,sincer,<r,;.
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Therefore, r,>1=H1,
[, =2r, > 2f, =1,
rn-2 2 rn-1 T rn 2 f3 + f2 = 1E4

o>2rg+r,>f  +f =1

—_ — -1 — 1+\/§
b_r12r2+rBan+fn-1_fn+1>an (CK— > )

- loggb > (n-1)log,p @ > (n-1)/5 (°." log,,a > 1/5)

- n-1<51og,,b = T(b) <5log,,b m

3-28



[Note] This is the worst case for T(b), in average,

T(b)z12ln2

‘ﬂrz
[Corollary]

In(b) 1.9405log,, b

The number of bit operations needed to find (a, b)
with a > b is O((log,b)3).

*Given a and b, how to find s, and t, > (a, b) =s,a+ t b?
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Thm :

Let a and b be positive integers. Then
(a,b)=sattb (forn=0,1, 2, ...)
where s, and t, are the nth terms of the sequences
defined recursively by

So=1,t,=0

s;=0,,=1

and

S;j = Sjp— 01Si1+ § =1, —Oati, (fOrj=2,3, ..., n)

where g; are the quotients in the divisions of the

Euclidean Algorithm when it is used to find (a, b).
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[pf Hint] If we can prove thatr; = s@a + tb forj =1,2, ... ,n
then since (a, b) =r,,, we have (a, b) =sa +tD.
[Proof] By induction,
(i) j=0 istrue,a=r,=1xa+0xb=sja+tb
j=1 istrue,b=r,=0xa+1xb=sa+tb
(i) Assume that r,.=sa +tb, forj=1, 2, ..., k-1
2 = e m el v
(|n the kth step of E.A.)
Then r = (s,a + t,b) - (s ,a + 4410)q 4
= (Sk2 — Sk1lk1)@ - (Lo — 10 1)b

=sa+thb
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[Note] (a, b) can be expressed in an infinite no. of
different ways as a linear combination of a
and b.
Since if (a,b) =d and d =sa + tb, then
d:(s+k(g))a+(t-k(%))b , Vk € Z.
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3.5 The Fundamental Theorem of

i Arithmetic

Lemma : Leta, b, c €Z*. If (a, b) =1 and a|bc, then a|c.

<proof>: Since (a,b)=1,dsandt>sa+th=1.
-. sac +tbc = c. If albc, then alsac +tbc =c. m

Lemma : If p|(a;a,...a,),
where p is a prime and a, € Z*, V |,

then 3 iwith1 <i<n, > pla.

<proof>: (1) Itis true forn = 1.
(2) Assume that it is true for n.
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If pl(a;a,...a,a,.1), then
pl(alaZ"'an) X an+1'
From above Lemma,
either p|(a,a,...a,) or pla,.,
= pla,forsomeiwithl<i<n+1.m

Thm: Let n € Z*, p;'s are primes, then n can be written
uniquely as n = p,"p,*“...p,'™ with p;< p; ifi <jand
t>0
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<proof>:
[Existence] (1) By contradiction, assume that n is the
smallest number that cannot be written as the
product of primes. If n is prime, then the Thm is true.
So n must be composite.
Letn=ab,l<a<nand1l<b<n. Butsincea,b<n,
a, b must be the product of primes. Then since n =
ab, nis also a product of primes. This is
contradiction.
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[Unique] (2) If n=p,p,...ps = 0;05--.0;

where p., g; are primes, p;=(Q;, V1<i<s, 1<) <,
withp, <p,<...<p,andg; <, <... < (-
Remove all common primes from both sides,

PiPi2---Piy = Aiydip--- Ay U211, v=>1.

However, it is a contradiction of above Lemma, since
p; must divide g; for some |, which is impossible,since
each g; Is a prime and is different from p;, the prime
factorization of n is unique.
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Def. The least common multiple Ilcm(a,b) of a and b, where a,
b e Z*, Is the smallest positive integer that is divisible

by a and b.
Fact: (1)Leta = p : pn b= p1 p2 p:” , Where p; is a
prime Vi, and min(a;, b;) denote the minimum of &,
and b;. Then

in(@y, in(ay,b, b b
ng(a’ b) _ pinln(a b,) gwln(a )“ mln(an h) ]i[pmln(a1 )
2)Let max(a, b,) denote the maximum of a, and b,
Rl [ [
Then
ICrr(a, b) _ pinax(al bl)p;nax(a2 b2) max(a b,) ]i[pmax(aI b))
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Lemma: If X, y eR, then max(x, y) + min(x, y) = x+y.

ab
gcd(a,b)

Thm: If a, b € Z*, them Ilcm(a,b) =

or ab =lcm(a, b)-gcd(a, b).
<proof>: ) i
ICm(a, b)ng(a, b) — H pimax(ai,bi)H pimin(ai,bi)
i=1 i=1

n
. max( a;,b; )+min( a;,b; )
—I I P

=1

=ab #
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Lemma: Letm, n €eZ* and (m, n) = 1, if d|mn, then
id,, d, e Z* 5d;Jm and d,|n and d = d,d..
Conversely, if d;Jm and d,|n , then d|mn, where
d =d,d.,.

Thm 2.9: Dirichlet’'s Theorem on primes Iin
Arithmetic Progression(1837)
Leta, b €Z* and (a, b)=1,thenan+b,n=1,2,...
contains infinitely many primes.

Lemma: If a and b are integers both of the form 4n+1,
then ab is also of the form.

<proof>: Let a = 4r+1, b = 4s+1, then

ab = (4r+1)(4s+1l)=16rs+4r+4s + 1
= 4(4rs+r+s) + 133:9 4k+1 m




+

Thm 2.10: There are infinitely many primes of the form
4n+3, where n €Z*.

<proof>: By contradiction. Assume that there are only
finite no. of primes of the form 4n+3, say,
Po=3, P1, P2s --os Pr
Let Q = 4p,p,...p, + 3, then 3 a prime g, q|Q
and g is of the form 4n+3. (If all these primes
are of the form 4n+1, the Q must be the form
4n+1). But none of the primes pg, P1,---» Py
divides Q.
Hence, there are infinitely many primes of the
form 4n+3.
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Thm 2.11: Let « be a root of the polynomial
X" = ¢, X"+...+c,X+C, where the coefficients
Cos Cqs --+» Chi€Z With cy# 0. Then « Is either
an integer or an irrational number.

<proof>: Suppose a is rational, then o = a/b, where
(a, b) =1 and b = 0.Since

a) a.._ a
(B) + Cn_l(g) ! +...+ Cl(g) + CO — O
wehavea" +c_a"b+...+c,ab" +c,b" =0

ThUS an = b(_Cn_lan_l — = Clabn—z . Cobn—l)
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It implies that b|a", since (a, b) = 1.
It is impossible, Unless b = 1

~.If o Is rational then a = +a, so
that o must be an integer.

EXx: Let a be a positive integer that is not the m-th
power of an integer. So that ¥a is not an
integer.Then Ya is irrational.

(Note: a is the root of x™ — a.)
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3.6 Factorization methods and
i the Fermat numbers

To factor n by the sieve of Erotosthenes, it needs
N divesions. So, the complexity is
O( /N (logN)2) = O(+/N (logN)?) bit opetations.

<Note>: The fastest method (the so-called number
field sieve) to factor N needs

log N)’3(log log N)7?) b |
exp((log N)*(loglogN)”®) bit operations
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Table2.1 Time Required for factorization of N (1992)

no. of decimal digits

50
75
100
200
300
500

no. of bit opetation Time
1.4 x 1010 14 sec
9.0 x 1012 3 hours
2.3 X 10%° 26 days

1.2 x 1023 3.8 x 10° years
1.5 x 10%° 4.9 x 10% years
1.3 x 1038 4.2 x 10%? years

Assume the speed is 10° bit opetations per second.
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Fermat factorization

Lemma: If n €eZ* and n Is odd, then
31 a one-to-one correspondence between
factorizations of n into two positive integers and
difference of two squares that equal n.

l.e., n=ab =s2-t?

Proof. Let n = ab, where a, b €Z* , then

a+b

a-b
n=ab=(——)—(——)* =s° -t~
( 5 ) —( 5 ) n

Then we can factor n by n = (s - t)(s + t).
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Algorithm:
Look for solutions of the equation n = x? - y? by
searching for perfect squares of the form x2 - n,
l.e., search
t2 - n, (t+1)? - n, (t+2)? - n
where t is the smallest integer greater than .,/ .

 This procedure is guaranteed to terminate. Since

(-5 e

. 1
« Complexity: O(n;—ﬁ) steps.
A6

3




e The Fermat numbers
Def: F = 22" 1 1 are called the Fermat numbers.

e F,=3, F,=5, F,=17, F,=257, F,=65537=216+1 are primes
but F;=232+1 is composite

Ex: 641|F;
<sol>: Since 641 =5-27+1 =24+ 54
SoFg=232+1=24.228+1=(641-5%)-28%+1
=641.28 - (5:2")4+1=641-228- (641 -1)* + 1
= 641(2%% - 641° + 4-6412 - 6-641 + 4)
= 641|F
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Thm: Every prime divisor of F,=2° +1 is of the form
2N*2K+1.

Ex: Show that F; = 257 is prime.

<Sol> If 3 a prime p|F; then p must be of the form
2"*2k+1=2°k+1=32k+1. Since there is no such a
prime <257 -.F,is prime.

Ex: Factor Fg = 2% +1=2% +1
<sol>:If p|F4,then p is of the form 28k+1 = 256k+1.
Search primes of the form that p < /F, .
We find (256 x 1071 + 1) = 274177|F,.
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Lemma: FyF;...F,; = F.-2.

n

Proof.
By induction,
itis true forn =1, since F; =3 =5-2 = F,-2.
Assume that it is true for n, then
FoF,...F (F, = (FoF;...F, . )F,=(F,-2)F,
= ) +)=V1=Z +)-2 =F - 2. m

3-49



+

Thm: (F,, F,)=1Vm,n>0and m =n.

Proof.

Assume m < n.

Let d|F,,, and d|F,..

Since FyF;...F, ;= F,-2,
dlF, - FoFy...F...F,.1 =2
—d=1or?2.

But F,and F,are odd,

->d=1=(F,,F) =
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n| 2"-2 iff n Is prime.

22.D

23.2 4§ 24-2=14
252

272

341| 2341-2

~N O1 W N

2"-1 if n Is prime.
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i 3.7 Linear Diophantine Equations

Problem: Given a, b, ¢c €Z, we want to find the solutions
forax +by=c,oXx,ye ”Z

() Is there any solution?

(i1)If there are solutions, how many solutions?
(a) exactly one? (b) infinitely?
(c) how many solutions > X,y € Z

Def. ax + by = c, where a, b, c € Z, is called a linear
Diophantine equations in two variables.
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Thm: Leta,b eZandd=(a, b). Thenax+ by =c
(1) has no integral solutions if d { c.
(2) If d|c, then there are infinitely many integral solutions.
(3) If (Xg, Yo) IS @ particular solution,
then all solutions are given by

X=Xg+ (%)n Y =Yo- (%)n, where n €Z.
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i Proof.
() TF X,y eZand ax + by = ¢, then

" dlaandd|b
= d|c.

(i) Assume that djc, then
ds,t,eeZ>d=(a,b)=as+tbtandde =c
= Cc = de = (astbt)e = a(se)+b(te)

. One solution is given by X = X, =se, y =y, = te.

Let X = X, +(Ejn andy =y, —(ijn,n eZ,
d d
b a
then ax + by = ax, + a(ajn + by, - b(ajn
=ax, +by,=c

.. there are infinitely many solutions.
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i (lSuppose X,y €Z,>ax+ by =c

axy thyg =c=a(x-Xy) +b(y-yy =0

a o)
= a(X - X,) = by, - y) :E(X_XO):E(yO_y)
a b a
(aa}— :>E|(YO—Y)
:>E|n629(%jn=yo—y:>y=yo—(3jn

a(xXx = Xg)=b(y,-y)

soalx = X,) = b(ijn = X =X, + (Rjn
d d
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Ex: Find solutions for 15x + 6y = 7
(15,6)=3and 3}7
= Nno solutions.

Ex: Find solutions for 21x + 14y =70
(21, 14) =7 and 7|70
= Infinitely many solutions.
By Euclidean Algorithm, we can find
1x21+(-1)x14=7
210 x 21+ (-10) x 14 =70
therefore,all solutions are given by
X=10+2n,y=-10-3n
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Ex: Find x,y € Z*, 20x + 50y = 510, x, y > 0.
<sol>: Since (20, 50)=10 and 10|510,
. there are solutions.
By Algorithm, we have
20(-2) + 50x1 =10 = 20(-2 x 51) + 50(1 x 51) =510
5o X=-102,y,=51 = x=-102 + 5n and y=51-2n
Butx,y >0 = -102+5n >0 and 51-2n >0

:>n2203 and n£25i
5 2

s n=21, 22, 23, 24 or 25.
(X, ¥)=(3,9), (8, 7), (13, 5), (18, 3) or (23,1).
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Thm: If a;, a,, ..., a, € Z*, then
the equation a;x; + a,x, + ... +a x, =cC
has integral solution iff d = (a,,a,,...,a,)|C.
Moreover, when there Is a solution,
there are infinitely many different solutions.

<proof>:

(MIF I X, Xy, oy XXy Fa X+ ... +a X, =C
dla, V1<i<n,=d|c.
Hence, If d } ¢, = no solution.

(I)By induction, it is true for n = 2,
("."a;X; + a,X, = ¢ has <o solutions if d|c)
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Assume there are oo solutions for n, we want to prove
that a,;x;+...+a,x,+a,.1X,,; = C has co solutions Iif d|c.
Since AnXp + A1 Xn+1 = (an’ an+1)y1 y el
= Xyt ..+ 8,9 X t(@p,a8n)Y = C
L d=(@y, e 8y 8gg) = (A 8g sy By, (@ Bny)
sAfdlc = ax, + ... +a.x, + a,.1%,,; = C has co solutions.
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e Given a,,a,,...,a, € Z* and X;,X,,...,.X, € Z*
find s = a;x;+a,X,+...+a. X, — easy

e Problem:
Given a,,a,,...,a, € Z* and s

find X;,X,,...,X, 3 S = a;X;+aX,+...+a. X, — hard

« Knapsack Problem: x;,X,,...,x, € {0,1}.
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