Chap. 9

#### by Mingfu LI, CGUEE

#### **Chapter 9: Graph Theory**



(c)2001-2002, Michael P. Frank

# §9.1: Graphs and Graph Models

- Correspond to symmetric binary relations *R*.
- A *simple graph G*=(*V*,*E*) consists of:



Visual Representation of a Simple Graph

- a set V of *vertices* or *nodes* (V corresponds to the universe of the relation R),
- a set *E* of *edges* / *arcs* / *links*: unordered pairs of [distinct?] elements  $u, v \in V$ , such that *uRv*.





 $\S$  9.1 – Graphs and Graph Models





§ 9.1 – Graphs and Graph Models

#### Directed Graphs

- Correspond to arbitrary binary relations *R*, which need not be symmetric.
- A *directed graph* (*V*,*E*) consists of a set of vertices *V* and a binary relation *E* on *V*.

• 
$$E.g.: V = \text{people},$$
  
 $E = \{(x,y) \mid x \text{ loves } y\}$ 

• 
$$e=(u,v), u,v \in V$$

### Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A *directed multigraph* G=(V, E, f) consists of a set *V* of vertices, a set *E* of edges, and a function  $f:E \rightarrow V \times V$ .
- E.g., V=web pages, E=hyperlinks. The WWW is a directed multigraph...



§ 9.1 – Graphs and Graph Models

### Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized...

|                     | Edge     | <b>M ultiple</b> | Self-     |
|---------------------|----------|------------------|-----------|
| Term                | type     | edges ok?        | loops ok? |
| Simple graph        | Undir.   | No               | No        |
| Multigraph          | Undir.   | Yes              | No        |
| Pseudograph         | Undir.   | Yes              | Yes       |
| Directed graph      | Directed | No               | Yes       |
| Directed multigraph | Directed | Yes              | Yes       |

# §9.2: Graph Terminology

• Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, union.



#### Degree of a Vertex

- Let *G* be an undirected graph,  $v \in V$  a vertex.
- The *degree* of *v*, deg(*v*), is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is *isolated*.
- A vertex of degree 1 is *pendant*.



#### Directed Adjacency

- Let G be a directed (possibly multi-) graph, and let e be an edge of G that is (or maps to) (u,v). Then we say:
  - -u is adjacent to v, v is adjacent from u
  - e comes from u, e goes to v.
  - e connects u to v, e goes from u to v
  - the initial vertex of e is u
  - the terminal vertex of e is v



#### Directed Degree

- Let G be a directed graph, v a vertex of G.
  - The *in-degree* of v, deg<sup>-</sup>(v), is the number of edges going to v.
  - The *out-degree* of v, deg<sup>+</sup>(v), is the number of edges coming from v.
  - The *degree* of v,  $deg(v) \equiv deg^{-}(v) + deg^{+}(v)$ , is the sum of v's in-degree and out-degree.

## Directed Handshaking Theorem

• Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

#### Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs  $K_n$
- Cycles  $C_n$
- Wheels  $W_n$
- *n*-Cubes  $Q_n$
- Bipartite graphs
- Complete bipartite graphs  $K_{m,n}$





(c)2001-2002, Michael P. Frank

§ 9.2 – Graph Terminology







§ 9.2 – Graph Terminology





#### **Bipartite Graphs**

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V<sub>1</sub> and V<sub>2</sub> such that every edge in the graph connects a vertex in V<sub>1</sub> and a vertex in V<sub>2</sub>(so that no edge in G connects either two vertices in V<sub>1</sub> or two vertices in V<sub>2</sub>)

#### Complete Bipartite Graphs

 The complete bipartite graph K<sub>m,n</sub> that has its vertex set partitioned into two subsets of m and n vertices, respectively. There is an edge between two vertices *iff* one vertex is in the first subset and the other is in the second subset.





§ 9.2 – Graph Terminology



# §9.3: Graph Representations & Isomorphism

- Graph representations:
  - Adjacency lists.
  - Adjacency matrices.
  - Incidence matrices.
- Graph isomorphism:
  - Two graphs are isomorphic iff they are identical except for their node names.







(c)2001-2002, Michael P. Frank § 9.3 – Graph Representations & Isomorphism





(c)2001-2002, Michael P. Frank § 9.3 – Graph Representations & Isomorphism



#### Graph Isomorphism

- Formal definition:
  - Simple graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  are *isomorphic* iff  $\exists$  a bijection  $f:V_1 \rightarrow V_2$  such that  $\forall a, b \in V_1$ , a and b are adjacent in  $G_1$  iff f(a)and f(b) are adjacent in  $G_2$ .
  - -f is the "renaming" function that makes the two graphs identical.
  - Definition can easily be extended to other types of graphs.



Graph Invariants under Isomorphism

Necessary but not sufficient conditions for  $G_1=(V_1, E_1)$  to be isomorphic to  $G_2=(V_2, E_2)$ : - |V1|=|V2|, |E1|=|E2|.

- The number of vertices with degree *n* is the same in both graphs.
- For every proper subgraph g of one graph, there is a proper subgraph of the other graph that is isomorphic to g.





(c)2001-2002, Michael P. Frank § 9.3 – Graph Representations & Isomorphism



§ 9.3 – Graph Representations & Isomorphism (c)2001-2002, Michael P. Frank

#### §9.4: Connectivity

- In an undirected graph, a *path of length n from u to v* is a sequence of adjacent edges going from vertex *u* to vertex *v*.
- A path is a *circuit* if u=v.
- A path *traverses* the vertices along it.
- A path is *simple* if it contains no edge more than once.



### Connectedness

- An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a *simple* path between any pair of distinct vertices in a connected undirected graph.
- Connected component: connected subgraph
- A *cut vertex* or *cut edge* separates 1 connected component into 2 if removed.

# Directed Connectedness

- A directed graph is *strongly connected* iff there is a directed path from *a* to *b* and from *b* to *a* for any two vertices *a* and *b*.
- It is *weakly connected* iff the underlying *undirected* graph (*i.e.*, with edge directions removed) is connected.
- Note *strongly* implies *weakly* but not vice-versa.



(c)2001-2002, Michael P. Frank



Counting Paths w Adjacency Matrices

- Let *A* be the adjacency matrix of graph *G*.
- The number of paths of length *r* from  $v_i$  to  $v_j$  is equal to  $(A^r)_{i,j}$ . (The notation  $(M)_{i,j}$  denotes  $m_{i,j}$  where  $[m_{i,j}] = M$ .)



# §9.5: Euler & Hamilton Paths

- An <u>Euler circuit</u> in a graph G is a simple circuit containing every edge of G.
- An *Euler path* in *G* is a simple path containing every <u>edge</u> of *G*.
- A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.
- A *Hamilton path* is a path that traverses each vertex in G exactly once.



(c)2001-2002, Michael P. Frank



# Some Useful Theorems

- A connected multigraph has an Euler circuit iff each vertex has even degree.
- A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.
- If (but <u>not</u> only if) G is connected, simple, has n≥3 vertices, and ∀v deg(v)≥n/2, then G has a Hamilton circuit.



### §9.6: Shortest Path Algorithm: Dijsktra's Algorithm

#### 1 Initialization:

- $2 \quad N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u

5 then 
$$D(v) = c(u,v)$$

6 else D(v) = 
$$\infty$$

7

#### 8 **Loop**

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N' :
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /\* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v \*/
- 15 until all nodes in N'

(c)2001-2002, Michael P. Frank

§ 9.6 – Shortest Path Algorithm





(c)2001-2002, Michael P. Frank

§ 9.6 – Shortest Path Algorithm

48

