Chap. 9

by Mingfu LI, CGUEE

Chapter 9: Graph Theory

(c)2001-2002, Michael P. Frank 1

§9.1: Graphs and Graph Models

- Correspond to symmetric binary relations R.
- A *simple graph G*=(*V*,*E*) consists of:

Visual Representation of a Simple Graph

- a set *V* of *vertices vertices* or *nodes* (*V* corresponds to corresponds to the universe of the relation R),
- a set *E* of *edges* / *arcs* / *links*: unordered pairs unordered pairs of [distinct?] elements $u, v \in V$, such that uRv .

(c)2001-2002, Michael P. Frank $\S 9.1 -$ Graphs and Graph Models 3

(c)2001-2002, Michael P. Frank $\S 9.1 -$ Graphs and Graph Models $_5$

Directed Graphs

- Correspond to arbitrary binary relations R, which need not be symmetric.
- A *directed graph* (*V*,*E*) consists of a set of vertices V and a binary relation E on V.

•
$$
E.g.: V = people,
$$

 $E = \{(x,y) | x \text{ loves } y\}$

$$
\bullet \ \ e=(u,v), u,v\in V
$$

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A *directed multigraph G*=(*V*, *E*, *f*) consists of a set V of vertices, a set E of edges, and a f unction f : E \rightarrow V \times V.
- E.g., *V*=web pages, *E*=hyperlinks. *The WWW is a directed a directed multigraph multigraph...*

(c)2001-2002, Michael P. Frank $\S 9.1 -$ Graphs and Graph Models $_7$

Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized...

§9.2: Graph Terminology

•Adjacent, connects, endpoints, degree, *initial, terminal, in initial, terminal, in -degree, out degree, out-degree, degree, complete, cycles, wheels, n complete, cycles, wheels, n -cubes, bipartite, cubes, bipartite, subgraph subgraph, union. , union.*

Degree of a Vertex

- Let G be an undirected graph, $v \in V$ a vertex.
- The *degree* of v, deg(v), is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is *isolated*.
- A vertex of degree 1 is *pendant*.

Directed Adjacency

- Let G be a directed (possibly multi-) graph, and let *e* be an edge of *G* that is (or maps to) (u,v) . Then we say:
	- *u* is *adjacent to adjacent to v*, *^v* is *adjacent from adjacent from u*
	- *e comes from comes from u*, *e goes to goes to v*.
	- *e connects u to v e connects u to v*, *e goes from u to v e goes from u to v*
	- the *initial vertex initial vertex* of *e* is *u*
	- $-$ the *terminal vertex* of *e* is *v*

Directed Degree

- Let G be a directed graph, v a vertex of G.
	- The *in -degree* of *^v*, deg (v) , is the number of edges going to *v*.
	- The *out -degree* of *^v*, deg (v) , is the number of edges coming from $v.$
	- $-$ The *degree* of v , deg (v) =deg (*^v*)+deg (v) , is the sum of *v*'s in-degree and out-degree.

Directed Handshaking Theorem

• Let G be a directed (possibly multi-) graph with vertex set V and edge set E . Then: 1

$$
\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|
$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_n
- •• Cycles C_n
- •• Wheels W_n
- •*n* -Cubes *Q n*
- •Bipartite graphs
- •• Complete bipartite graphs $K_{m,n}$

(c)2001-2002, Michael P. Frank \S 9.2 – Graph Terminology 20

Bipartite Graphs

• A *simple graph G* is called *bipartite* if its vertex set *V* can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in $V^{}_{2})$

Complete Bipartite Graphs

• The *complete bipartite graph* $K_{m,n}$ that has its vertex set partitioned into two subsets of *m* and *n* vertices, respectively. There is an edge between two vertices *iff* one vertex is in the first subset and the other is in the second subset.

§9.3: Graph Representations & Isomorphism

- Graph representations:
	- Adjacency lists.
	- Adjacency matrices.
	- Incidence matrices.
- •Graph isomorphism:
	- $-$ Two graphs are isomorphic iff they are identical except for their node names.

(c)2001-2002, Michael P. Frank \S 9.3 – Graph Representations & Isomorphism 28

(c)2001-2002, Michael P. Frank \S 9.3 – Graph Representations & Isomorphism 30

Graph Isomorphism

- Formal definition:
	- $-$ Simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* if \exists a bijection $f:V_1 \rightarrow V_2$ such that \forall $a,b \in V_1$, *a* and *b* are adjacent in G_1 iff $f(a)$ and $f\!\!\left(b\right)$ are adjacent in $G_2.$
	- $-f$ is the "renaming" function that makes the two graphs identical. graphs identical.
	- Definition can easily be extended to other types of graphs.

Graph Invariants under Isomorphism

Necessary but not *sufficient* conditions for $G_1 = (V_1, E_1)$ to be isomorphic to $G_2 = (V_2, E_2)$: –|*V*1|=| *V*2|, | *E*1|=| *E*2|.

- The number of vertices with degree *n* is the same in both graphs.
- For every proper subgraph g of one graph, there is a proper subgraph of the other graph that is isomorphic to *g*.

(c)2001-2002, Michael P. Frank \S 9.3 – Graph Representations & Isomorphism 33

(c)2001-2002, Michael P. Frank \S 9.3 – Graph Representations & Isomorphism 34

§9.4: Connectivity

- In an undirected graph, a *path of length n from u to v* is a sequence of adjacent edges going from vertex u to vertex $v.$
- A path is a *circuit* if $u=v$.
- A path *traverses* the vertices along it.
- A path is *simple* if it contains no edge more than once.

$$
§ 9.4 - Connecticut
$$

Connectedness

- An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a *simple* path between any pair of distinct vertices in a connected undirected graph.
- •*Connected component*: connected subgraph
- •A *cut vertex* or *cut edge* separates 1 connected component into 2 if removed.

Directed Connectedness

- A directed graph is *strongly connected* iff there is a directed path from *a* to *b* and from *b* to *a* for any two vertices *a* and *b*.
- It is *weakly connected* iff the underlying *undirected* graph (*i.e.*, with edge directions removed) is connected.
- Note *strongly* implies *weakly* but not vice versa.

$$
§ 9.4 - Connecticut
$$

Counting Paths w Adjacency Matrices

- Let A be the adjacency matrix of graph *G*.
- The number of paths of length r from v_i to v_j is equal to (A^r) $\mathcal{O}_{i,j}$. (The notation $\mathcal{M}_{i,j}$ denotes $m_{i,j}$ where $[m_{i,j}]=M$.)

§9.5: Euler & Hamilton Paths

- An *Euler circuit* in a graph *G* is a simple circuit containing every edge of *G*.
- An *Euler path* in G is a simple path containing every edge of *G*.
- A *Hamilton circuit* is a circuit that traverses each vertex in G exactly once.
- A *Hamilton path* is a path that traverses each vertex in G exactly once.

Some Useful Theorems

- A connected multigraph has an Euler circuit iff each vertex has even degree.
- A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.
- If (but <u>not</u> only if) G is connected, simple, has $n \geq 3$ vertices, and $\forall v$ deg(v) $\geq n/2$, then G has a Hamilton circuit.

§9.6: Shortest Path Algorithm: Dijsktra's Algorithm

1 *Initialization:*

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u

$$
5 \qquad \text{then } D(v) = c(u,v)
$$

$$
6 \qquad \text{else } D(v) = \infty
$$

7

8 *Loop*

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update $D(v)$ for all v adjacent to w and not in N':
- 12 $D(v) = min(D(v), D(w) + C(w, v))$
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 *until all nodes in N'*

(c)2001-2002, Michael P. Frank \S 9.6 – Shortest Path Algorithm 47

Chap. 9

by Mingfu LI, CGUEE

(c)2001-2002, Michael P. Frank \S 9.6 – Shortest Path Algorithm 48

