Chapter 9:

Graph Theory
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39.1: Graphs and Graph Models
» Correspond to symmetric
binary relations R.

e A simple graph G:(V’E) Visual Representation

consists of: of a Simple Graph

— a set V of vertices or nodes (V corresponds to
the universe of the relation R),

— a set E of edges / arcs / links: unordered pairs
of [distinct?] elements u,v € V, such that uRv.
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Example of a Simple Graph

e etV be the set of states in the far-
southeastern U.S.:

-V={FL, GA, AL, MS, LA, SC, TN, NC}
e Let E={{u,v}u adjoins v}
={{FL,GA}{FL,AL} {FL,MS},

{FL,.LA}{GAAL}{ALMS}, | ™ A\v
{MS,LA},{GA,SC},{GA TN}, \ f
{SC,NC},{NC, TN},{MS, TN}, L

{MS,AL}}
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Multigraphs

 Like simple graphs, but there may be more
than one edge connecting two given nodes.

o A multigraph G=(V, E, f) consists of a set
V of vertices, a set E of edges (as primitive
objects), and a function N
f:E>{{uvHu,veV A u=v}. Parallel

- edges
e E.g., nodes are cities, edges
are segments of major highways.
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Pseudographs

e Like a multigraph, but edges connecting a
node to itself are allowed.

e A pseudograph G=(V, E, f) where
f.E—>{{u,v}u,veV}. Edge ecE isa loop if

f(e)={u,u}={u}. loops
e E.g., nodes are campsites

In a state park, edges are
hiking trails through the woods.
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Directed Graphs

e Correspond to arbitrary binary relations R,
which need not be symmetric.

e A directed graph (V,E) consists of a set of
vertices V and a binary relation E on V.

e E.0.:V =people,
E={(x)y) | x loves y}
e e=(u,v),uveV
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Directed Multigraphs

 Like directed graphs, but there may be
more than one arc from a node to another.

e A directed multigraph G=(V, E, ) consists
of a set V of vertices, a set E of edges, and a

function f:E—>VxV.

e E.g., V=web pages,
E=hyperlinks. The WWW is
a directed multigraph...
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Types of Graphs: Summary

« Summary of the book’s definitions.
e Keep in mind this terminology Is not fully

standardized...

Edge Multiple Self-
Term type edges ok? loops ok?
Simple graph Undir. No No
Multigraph Undir. Yes N o
Pseudograph Undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph  Directed Yes Yes
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39.2: Graph Terminology

e Adjacent, connects, endpoints, degree,
Initial, terminal, In-degree, out-degree,
complete, cycles, wheels, n-cubes, bipartite,
subgraph, union.
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Let G be an undirected graph with edge set E.
et ecE be (or map to) the pair {u,v}. Then
we say:

e U, v are adjacent / neighbors / connected.

e Edge e Is Incident with vertices u and v.
e Edge e connects u and v.
 Vertices u and v are endpoints of edge e.
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Degree of a Vertex

e Let G be an undirected graph, veV a vertex.

e The degree of v, deg(Vv), Is Its number of
Incident edges. (Except that any self-loops
are counted twice.)

« A vertex with degree 0 Is isolated.
e A vertex of degree 1 Is pendant.
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Handshaking Theorem

e Let G be an undirected (simple, multi-, or
pseudo-) graph with vertex set V and edge
set E. Then

> deg(v) = 2|E|

veV

e Corollary: Any undirected graph has an
even number of vertices of odd degree.
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Directed Adjacency

e Let G be a directed (possibly multi-) graph,
and let e be an edge of G that is (or maps
to) (u,v). Then we say:

— u Is adjacent to v, v Is adjacent from u

— e comes from u, e goes to v.

— e connectsuto v, e goes fromutov
— the initial vertex of e Isu

— the terminal vertex of e is v
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Directed Degree

e Let G be a directed graph, v a vertex of G.

— The in-degree of v, deg=(v), Is the number of
edges going to v.
— The out-degree of v, deg*(v), Is the number of

edges coming from v.

— The degree of v, deg(v)=deg-(v)+deg*(v), Is the
sum of v’s in-degree and out-degree.
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Directed Handshaking Theorem

e Let G be adirected (possibly multi-) graph
with vertex set V and edge set E. Then:

> deg (v) =) deg (v) == Zdeg(v)—\E\

veV veV VeV

* Note that the degree of a node Is unchanged
by whether we consider its edges to be
directed or undirected.
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Special Graph Structures

Special cases of undirected graph structures:
« Complete graphs K,

e Cycles C,

* Wheels W,

» n-Cubes Q,
 Bipartite graphs
« Complete bipartite graphs K,
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Complete Graphs

e For any neN, a complete graph on n
vertices, K., 1s a simple graph with n nodes
In which every node Is adjacent to every
other node: Yu,veV: uzve>{u,v}eE.

M4 W &

Note that K, has Z'—

edges
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* For any n=3, a cycle on n vertices, C_, Is a
simple graph where V={v,,v,,... ,v_} and

E:{{Vl’v2}1{V2’V3}1 e ’{Vn—livn}’{vnivl}}-

AN

How many edges are there in C_?
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* For any n>3, a wheel W, Is a simple graph
obtained by taking the cycle C, and adding
one extra vertex v, ,, and n extra edges

{{thb’vl}1 {thb’V2}1 s ’{thb’vn}}-

r RS EHE

How many edges are there in W_?
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n-cubes (hypercubes)

» For any neN, the hypercube Q, Is a simple
graph consisting of two copies of Q. ,
connected together at corresponding nodes.
Q, has 1 node.

: @@

1

Number of vertices: 2". Number of edges:Exercise to try!
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n-cubes (hypercubes)

e Forany neN, the hypercube Q, can be
defined recursively as follows:
- Qu={{Vv,}.<g} (one node and no edges)
— For any neN, if Q. .=(V,E), where V={v,,...,v }

and E={e,,...,.e }, then Q,,,=(V{v, ,....v, },

Eu{e}', . ,eb'}u{{yl,vl'}:{vz,vz'}, .
{v..v, }}) wherev, ,...,v, are new vertices,
and where if e;={v;,v } then &; ={v; v, }.
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Bipartite Graphs

o A simple graph G is called bipartite if its
vertex set V can be partitioned into two
disjoint sets V, and V, such that every edge
In the graph connects a vertex in V, and a

vertex in V,(so that no edge in G connects

either two vertices in V, or two vertices In
Va)
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Complete Bipartite Graphs

» The complete bipartite graph K, ,, that has
Its vertex set partitioned into two subsets of
m and n vertices, respectively. There Is an
edge between two vertices Iff one vertex Is

In the first subset and the other iIs In the
second subset.
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Subgraphs

A subgraph of a graph G=(V,E) Is a graph
H=(W,F) where WcV and FcE.

ety e ¥

G

(c)2001-2002, Michael P. Frank § 9.2 — Graph Terminology 24



Graph Unions

* The union G,UG, of two simple graphs
G,=(V,, E;) and G,=(V,,E,) Is the simple
graph (V,0V,, E,UE,).
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39.3: Graph Representations &
|somorphism

e Graph representations:
— Adjacency lists.
— Adjacency matrices.
— Incidence matrices.

o Graph iIsomorphism:

— Two graphs are isomorphic iff they are
Identical except for their node names.
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Adjacency Lists

e A table with 1 row per vertex, listing Its
adjacent vertices.

Adjacent
Vertex [Vertices
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Directed Adjacency Lists

e 1 row per node, listing the terminal nodes

of each edge incident from that node.
Initial |Terminal

Vertex |Vertices
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Adjacency Matrices

* Matrix A=[g;], where a;; Is 1 If {v;, v;} Is an
edge of G, 0 otherwise.
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Incidence Matrices

* Matrix A=[a;],,.. Where a; Is 1 if ¢; incident
with v;, 0 otherwise.

@
Y.
3 )

(c)2001-2002, Michael P. Frank S 9.3 — Graph Representations & Isomorphism 39



Graph Isomorphism

 Formal definition:

— Simple graphs G,=(V,, E,) and G,=(V,, E,) are
Isomorphic Iff 3 a bijection f:V,—V, such that
vV a,beV,, aand b are adjacent in G, Iff f(a)

and f(b) are adjacent in G,.

— fis the “renaming” function that makes the two
graphs identical.

— Definition can easily be extended to other types
of graphs.
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Graph Invariants under Isomorphism

Necessary but not sufficient conditions for
G,=(V,, E,) to be 1somorphic to G,=(V,, E,):
— V1|=|V2|, |E1|=|E2).
— The number of vertices with degree n Is the

same In both graphs.

— For every proper subgraph g of one graph,
there Is a proper subgraph of the other graph
that Is iIsomorphic to g.
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Isomorphism Example

 |f iIsomorphic, label the 2nd graph to show
the Isomorphism, else identify difference.
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Are These Isomorphic?

e |f iIsomorphic, label the 2nd graph to show
the 1Isomorphism, else identify difference.

* Same # of

vertices
* Same # of

edges
* Different
# of verts of
degree 2!
(1vs3)
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39.4: Connectivity

 |n an undirected graph, a path of length n
from u to v Is a sequence of adjacent edges
going from vertex u to vertex v.

nath 1s a circult If u=v.

path traverses the vertices along It.

path i1s simple If it contains no edge more
than once.
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Paths in Directed Graphs

e Same as In undirected graphs, but the path
must go In the direction of the arrows.
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Connectedness

« An undirected graph Is connected Iff there Is a
path between every pair of distinct vertices in the
graph.

e Theorem: There Is a simple path between any pair
of distinct vertices In a connected undirected
graph.

e Connected component: connected subgraph

e A cutvertex or cut edge separates 1 connected
component into 2 If removed.
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Directed Connectedness

e A directed graph Is strongly connected iff
there Is a directed path from a to b and from
b to a for any two vertices a and b.

|t Is weakly connected Iff the underlying

undirected graph (i.e., with edge directions
removed) IS connected.

* Note strongly implies weakly but not vice-
versa.
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e Are the graphs G and H strongly
connected? Are they weakly connected?

> 1P
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Paths & Isomorphism

* Note that connectedness, and the existence
of a circuit or simple circuit of length k are
graph invariants with respect to
Isomorphism.

Isomorphic?

> =L
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Counting Paths w Adjacency Matrices

e Let A be the adjacency matrix of graph G.

* The number of paths of length r from v, to
v; Is equal to (A");;. (The notation (M);;
denotes m;; where [m;;] = M.)
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39.5: Euler & Hamilton Paths

e An Euler circult in a graph G iIs a simple
circuit containing every edge of G.

e An Euler path in G is a simple path
containing every edge of G.

o A Hamilton circuit iIs a circuit that
traverses each vertex in G exactly once.

« A Hamilton path Is a path that traverses
each vertex in G exactly once.
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e \Which has an Euler circuit?
Of those that do not, which has an Euler

(
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e \Which has an Hamilton circuit or, if not, a
Hamilton path?
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Some Useful Theorems

« A connected multigraph has an Euler circuit
Iff each vertex has even degree.

A connected multigraph has an Euler path
(but not an Euler circuit) iff it has exactly 2

vertices of odd degree.

e |f (but not only If) G Is connected, simple,
has n>3 vertices, and Vv deg(v)>n/2, then G
has a Hamilton circuit.

(c)2001-2002, Michael P. Frank § 9.5 — Euler & Hamilton Paths 46



39.06: Shortest Path Algorithm:

Dijsktra’s Algorithm

1 Initialization:

2 N ={u}

3 for all nodes v

4 ifvadjacenttou

5 then D(v) = c(u,v)
6 else D(v) =

7

8

Loop
9 find w not in N' such that D(w) is a minimum
10 addwto N'

11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min( D(v), D(w) + c(w,V) )

13 /* new cost to v is either old cost to v or known
14  shortest path cost to w plus cost from w to v */
15 until all nodes in N'
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Dijkstra’s Algorithm

PR
W Z

Shortest path tree
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