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38.1: Relations and Properties

Let A, B be any two sets.

A binary relation R from A to B, written (with signature)
R:A<B, 1s a subset of AxB.

— Eg,let<:NoN:= {(nm) | n<m}
The notation a R b or aRb means (a,b)€R.

— E.g.,a<bmeans (a,b)e <

If aRb we may say “a 1s related to b (by relation R)”, or
“a relates to b (under relation R)”.

A binary relation R corresponds to a predicate function
Pr:AxB—{T,F} defined over the 2 sets 4,B; e.g.,
“eats” := {(a,b)| organism a eats food b}
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Complementary Relations

* Let R:4A<—B be any binary relation.

« Then, X'A<B, the complement of R, is the
binary relation defined by

K:= {(a,b) | (a,D)&R} = (AxB) — R
Note this is just R if the universe of

discourse 1s U = AxB; thus the name
complement.

» Note the complement of Xis R.
Example: «= {(a,b) | (a,0)2<} = {(a,b) | ~a<b} ==
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Relations Example

e Let 4={0,1,2}, B= {a,b}. Then R = {(0,a),
(0,b), (1,a), (2,b)} 1s a relation R: A—B.

ORa 1Ra, but 1l Xb.
R a b

0
1
2
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Inverse Relations

* Any binary relation R:4<>B has an inverse
relation R ':B<—A4, defined by
R1':= {(b,a)| (a,b)eR}.
E.g.,<'={(b,a)|a<b} = {(b,a) | b>a} = >.

 F.g.,1f R:People—Foods i1s defined by
aRb < a eats b, then:
b R 'a < b is eaten by a. (Passive voice.)
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Relations on a Set

* A (binary) relation from a set A4 to 1itself 1s
called a relation on the set A4.

» E.g., the “<” relation from earlier was
defined as a relation on the set N of natural
numbers.

» The identity relation 1, on a set 4 1s the set
(a,a)lacd;.
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o« 4=1{123.4) R= {(a,b)| a divides b} =?.
R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),
3,3), (4,4)}

1 2 3 4
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* (O: How many relations are there on a set
with n elements?
A: 1. What 1s the cardinality of 4x4 1f 4

has n elements?

2. How many subsets are there for 4xA4?
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Reflexivity

» A relation R on A4 1s reflexive if YVaeA, aRa.
— E.g., therelation = : = {(a,b) | a=b} 1s reflexive.

» A relation is irreflexive iff 1ts complementary
relation 1s reflexive.

— Note “irreflexive” # “not reflexive”!

— Example: <1s irreflexive.

— Note: “likes” between people is not reflexive, but not
irreflexive either. (Not everyone likes themselves, but
not everyone dislikes themselves either.)
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Symmetry & Antisymmetry

* A binary relation R on 4 1s symmetric iff R
= R, that is, if (a,b)eR < (b,a)eR.
— E.g., = (equality) 1s symmetric. <1s not.
— “1s married to” 1s symmetric, “likes” 1s not.

* A binary relation R 1s antisymmetric 1f
(a,b)eR — (b,a)R.

— <1s antisymmetric, “likes” 1s not.
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Transitivity

» A relation R 1s fransitive 1t (for all a,b,c)
(a,b)eR A (b,c)eR — (a,c)eR.

A relation 1s intransitive 1if 1t 1s not
transitive.

Examples: “is an ancestor of” 1s transitive.
“likes” 1s 1ntransitive.

“1s within 1 mile of” 1s... ?
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Rl = {(29)9(391)9(392)9(491)9(492)9(493)}
R2 — {(19)9(192)9(291)}

R;=1{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),
(3,3),(3,4),(4,4)}
Which of the relations are transitive?
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* A relation R:A<B 1s total if for every a€ A,
there 1s at least one beB such that (a,b)eR.

* If R 1s not total, then 1t 1s called strictly
partial.

* A partial relation 1s a relation that might be
strictly partial. Or, 1t might be total. (In
other words, all relations are considered
“partial.”)
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o« 4=1{123.4) R= {(a,b)| a divides b} =?.

R =1(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),
(3,3), (4,4)}. Is R totality?

1 2 3 4
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Functionality

* A relation R:A<—B 1s functional (that 1s, 1t 1s also a
partial function R:4—B) if, for any a€ A, there 1s
at most 1 be B such that (a,b)eR.

R is antifunctional if its inverse relation R7! is
functional.

— Note: A functional relation (partial function) that is
also antifunctional 1s an invertible partial function.

* Ris atotal function R:A— B 1f 1t 1s both functional
and total, that 1s, for any a4, there 1s exactly 1 b
such that (a,b)eR. If R is functional but not total,
then 1t i1s a strictly partial function.

(¢)2001-2003, Michael P. Frank § 8.1 — Relations and Properties 15



Composite Relations

 Let R:A<—B, and S:B<—~C. Then the composite
SoR of R and S 1s defined as:

SoR = {(a,c) | aRb A bSc}

* Note function composition fog 1s an example.

« The n power R” of a relation R on a set 4 can be
defined recursively by:
RV:=1,; R"':= RR for all n>0.

— Negative powers of R can also be defined if desired, by
R":= (R
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* Find the composite S o R, where
R={(1,1),(1,4),(2,3),(3,1),(3,4)}

§=1(1,0),(2,0),(3,1),(3,2),(4,1);
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* Find the powers R", where

R={(1,1),(2,1),(3,2),(4,3)}.
R* ={

Theorem:

R’ = { The relatian
on a set 4 1s
R* = { transitive 1t
_R4 _Rs _ R"cR for n=1,2,...
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38.2: n-ary Relations

* An n-ary relation R on sets 4,,...,4
written R:A4,,...,4,, 1s a subset
RcAx...xA,

* The sets 4. are called the domains of R.
* The degree of R 1s n.

n)

* R1s functional in domain A 1f 1t contains at
most one n-tuple (..., a;,...) for any value
a; within domain 4.
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Relational Databases

» A relational database 1s essentially an n-
ary relation R.

* A domain 4, 1s a primary key for the
database 1f the relation R 1s functional in 4.

* A composite key for the database 1s a set of
domains {4;, 4, ...} such that R contains at
most 1 n-tuple (...,a,.. sl .) for each
composite value (a;, a;,...)€d x4 X...
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* A, =1a,b,c}, A, = xy,z}, A5 = {1,2,3,4},
which 1s a primary key?
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Selection Operators

» Let 4 be any n-ary domain 4=4,X...x4,,
and let C:4— {T,F} be any condition
(predicate) on elements (n-tuples) of 4.

» Then, the selection operator s 1s the

operator that maps any (n-ary) relation R on
A to the n-ary relation of all n-tuples from R
that satisty C.

—le,VRcA, s/(R)=RNiacAd|s-(a)=T}
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Selection Operator Example

* Suppose we have a domain
A = StudentName x Standing x SocSecNos

» Suppose we define a certain condition on A4,

UpperLevel(name,standing,ssn) : =
[(standing = junior) v (standing = senior)]
* Then, Sy,,e70ve 18 the selection operator that takes
any relation R on 4 (database of students) and

produces a relation consisting of just the upper-
level classes (Juniors and seniors).
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Projection Operators

» Let A =A4,X...xA, be any n-ary domain, and
let {i,}=(i,,...,i,,) be a sequence of indices
all falling in the range 1 to n,

— That 1s, where 1 <i, <mforall ] <k <m.

» Then the projection Opemtor on n-tuples

P iA—> 4 x..x4,

1S deﬁned by:
By (ay,..
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Projection Example

« Suppose we have a ternary (3-ary) domain
Cars=ModelxYearxColor. (note n=3).

* Consider the index sequence {i,}= 1,3. (m=2)

* Then the projection A; 1simply maps each tuple
(a,,a,,a;) = (model,year,color) to its image:

(a,,a, )=(a,,a;)=(model,color)
» This operator can be usefully applied to a whole

relation RcCars (database of cars) to obtain a list
of model/color combinations available.
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Projection Example

* What results when the projection P, ; 1s
applied to the 4-tuples (2,3,0,4), and
(a,,ay,a5,a,)?
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Join Operator

» Puts two relations together to form a sort of
combined relation.

* If the tuple (4,B8) appears in R,, and the
tuple (B,C) appears in R,, then the tuple

(4,B,C) appears in the join J(R,,R,).

— A, B, C can also be sequences of elements
rather than single elements.
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Join Operator

o If the tuple (4,B) appears in R,, and the
tuple (B,C) appears in R,, then the tuple
(4,B,C) appears 1n the join J(R,,R,).

* R:degree of m; S:degree of n;

Jp(R,S)=(A,B,C): degree of m+n-p,
where R=(4,B), S=(B,C), |Bl=p
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Join Example

* Suppose R, 1s a teaching assignment table,
relating Professors to Courses.

* Suppose R, 1s a room assignment table
relating Courses to Rooms,Times.

* Then J(R,,R,) 1s like your class schedule,
listing (professor,course,room,time).
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38.3: Representing Relations

* Some ways to represent n-ary relations:

— With an explicit list or table of its tuples.
— With a function from the domain to {T,F}.

* Or with an algorithm for computing this function.
« Some special ways to represent binary
relations:

— With a zero-one matrix.
— With a directed graph.
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Using Zero-One Matrices

» To represent a relation R by a matrix
M;, =[m;], let m; =11t (a,,b,)€R, else 0.

» E.g., Joe likes Susan and Mary, Fred likes
Mary, and Mark likes Sally.

 The 0-1 matrix Susan Mary Sally
representation Joe | 1 1 0
of that “Likes” Fred | 0 1 0
relation: Mark | 0 0
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Zero-One Reflexive, Symmetric

» Terms: Reflexive, non-Reflexive, irreflexive,
symmetric, asymmetric, and antisymmetric.

— These relation characteristics are very easy to
recognize by inspection of the zero-one matrix.

1 any- 0 any- . al
thing thing /
1 0 1 % 0
o‘é%

| 0 /

any” any-
thing 1 thing O O

Reflexive: Irreflexive: Sy O ic Antisymmetric:
all 1’s on diagonal | all 0’s on diagonal || 2l 1d(eiptlcal | all 1’s are across
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Examples

Ex:Is R reflexive, symmetric, and/or
antisymmetric?

Ex:What are the matrices representing
R,UR, and R,NR,?

MRluRz = MR1 \/MR2
MleR2 = MR1 /\MR2
|\/|RloR2 = |\/|R2@|\/|Rl
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Examples

Ex:What are the matrices representing
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Using Directed Graphs

* Adirected graph or digraph G=(V,E;) 1s a set V. of
vertices (nodes) with a set E.cV -xV of edges
(arcs,links). Visually represented using dots for nodes,
and arrows for edges. Notice that a relation R:4<B can
be represented as a graph G=(V.=A4AUB, E =R).

Edge set £,

Susan Mary Sally G (blmws)

1 1 0 ] Joe e=—>e Susan
o 1 0 Fred .>g. Mary

0 0 1 Mark e——>-e Sally

- - \ J

NodeYset Ve

: black dot
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Digraph Reflexive, Symmetric

It 1s extremely easy to recognize the reflexive/irreflexive/
symmetric/antisymmetric properties by graph inspection.

e ° ° ° o __o ® o
IR R ottt
o—o ° o—30
O O 0| 65
Reflexive: [rreflexive: Symmetric:  Antisymmetric:
Every node No node Every link 1s No link 1is
has a_self-loon inks to i bidirectiona hidirectional

Asymmetric, non-antisymmetric
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38.4: Closures of Relations

For any property X, the “X closure” of a set 4 1s defined as
the “smallest” superset of 4 that has the given property.

The reflexive closure of a relation R on A 1s obtained by
adding (a,a) to R for each aeA4. lLe., 1ti1s|R U [,

The symmetric closure of R 1s obtained by adding (b,a) to
R for each (a,b) inR. Le.,itisfR U R!

The transitive closure or connectivity relation of R 1s
obtained by repeatedly adding (a,c) to R for each
(a,b),(b,c) in R.

— le., 1tis
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Examples

 What is the reflexive closure of the relation

R = {(a,b) | a < b} on the set of integers ?
Rul,={(a,b) a < b} Ii{(a,a)|aclZ} = {(a,b)| a<b}

» What is the symmetric closure of R = {(a,b) | a > b} on the
set of positive integer?

RUR'={(a,b) a>b} U {(a,b) | a<b) = {(a,b) a+b}

» The transitive closure or connectivity relation of R
R={(1,3),(1,4),(2,1),(3,2)}, R* = {
R ={ b, R =
So R*={
h
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Paths in Digraphs/Binary Relations

* A path of length n from node a to 6 1n the directed
graph G (or the binary relation R) 1s a sequence
(a,x,), (x,,%5), ..., (x,_,,b) of n ordered pairs in £
(or R).

— An empty sequence of edges 1s considered a path of
length 0 from a to a.

— If any path from a to b exists, then we say that a 1s
connected to b. (“You can get there from here. ”)

* A path of length n>1 from a to a 1s called a circuit
or a cycle.

» Note that there exists a path of length n from a to
b 1n R 1f and only 1if (a,b)eR".
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Simple Transitive Closure Alg.

A procedure to compute R* with 0-1 matrices.

procedure transClosure(Mpy:rank-n 0-1 mat.)
A =B =M;;
fori:=2ton begin
A=ACOM,; B:=BVvA {join}
end {note A represents R’}
return B {Alg. takes O(n*) time}
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A Faster Transitive Closure Alg.

procedure transClosure(My:rank-n 0-1 mat.)
A =B =M,;
for i :=1to|log, n| begin
A=A0OA; (A represents Rzl}

B=BVvA {“dd” M "into B}

end
return B {Alg. takes only ®(#? log n) time}
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Roy-Warshall Algorithm

« Uses only ®O(#?) operations!
Procedure Warshall(Mj, : rank-n 0-1 matrix)
W =M,
fork:=1ton
fori:=1ton
forj:=1ton
Wy =Wy Vv (W, A w,q.)

g/ "
return W {this represents R}

w;; = | means there is a path from i to j going only through nodes <k
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38.5: Equivalence Relations

* An equivalence relation (e.r.) on a set 4 1S
simply any binary relation on A4 that 1s
reflexive, symmetric, and transitive.

— E.g., = 1tself 1s an equivalence relation.

— For any function f:4 —B, the relation “have the
same f value”, or =,:= {(a,,a,) | la,)=a,)}
1S an equivalence relation, e.g., let m= “mother
of” then =, = “have the same mother” 1s an e.r.
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Equivalence Relation Examples

“Strings a and b are the same length.”

“Integers a and b have the same absolute
value.”

“Real numbers a and b have the same
fractional part (i.e.,a — b € Z.).”

“Integers a and b have the same residue
modulo m.” (for a given m>1)
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Equivalence Classes

Let R be any equiv. rel. on a set 4.

The equivalence class of a,
lal, := { b|aRb} (optional subscript R)
— It 1s the set of all elements of A4 that are “equivalent” to
a according to the eq.rel. R.
— Each such b (including a itself) is called a
representative of [a].
Since f(a)=[a]; 1s a function of a, any
equivalence relation R be defined using aRb : =
“a and b have the same f value”, given that f.
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Equivalence Class Examples

“Strings a and b are the same length.”
— [a] = the set of all strings of the same length as a.

“Integers a and b have the same absolute value.’

b/

— [a] = the set {a, —a}

“Real numbers a and b have the same fractional
part (i.e.,a— b € Z1.).”

— [a] =theset {..., a2, a1, a,atl, at2, ...}
“Integers a and b have the same residue modulo
m.” (for a given m>1)

— [a] =the set {..., a—2m, a—m, a, atm, at2m, ...}
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* A partition of a set A4 1s the set of all the
equivalence classes {4,, 4,, ... } for some
e.r. on A.

* The 4,’s are all disjoint and their union = 4.

» They “partition” the set into pieces. Within
each piece, all members of the set are
equivalent to each other.
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