

Chap. 8

by Mingfu LI, CGUEE

Chapter 8: Relations

(c)2001-2003, Michael P. Frank 1

§8.1: Relations and Properties

- •• Let A, B be any two sets.
- •• A *binary relation* R from A to B, written (with signature) $R: A \rightarrow B$, is a subset of $A \times B$.

<u>– Listo </u> $E. g., \, \text{let} \leq : \mathbb{N} \to \mathbb{N} : \equiv \{ (n,m) \mid n \leq m \}$

•• The notation $a \not R b$ or aRb means $(a,b) \in R$.

 $E.g., a \leq b$ means $(a,b) \in \leq$

- •• If aRb we may say " "*a* is related to *b* (by relation R)", or ""*a* relates to *b* (under relation *R*)".
- •A binary relation *R* corresponds to a predicate function P_R : $A \times B \rightarrow \{T, F\}$ defined over the 2 sets A, B ; *e.g.*, "eats $f'':\equiv \{(a,b)| \text{ organism } a \text{ eats food } b\}$

Complementary Relations

- Let $R: A \rightarrow B$ be any binary relation.
- Then, $R: A \rightarrow B$, the *complement* of R, is the binary relation defined by $R := \{(a,b) | (a,b) \notin R\} = (A \times B)^{-1}$ − *R* Note this is just R if the universe of discourse is $U = A \times B$; thus the name *complement. complement.*
- Note the complement of *R* is *R*.

Example: \neq = {(*a*,*b*) | (*a*,*b*) \neq <} = {(*a*,*b*) | \neg *a* <*b*} = \ge

Relations on a Set

- A (binary) relation from a set A to itself is called a relation *on* the set A.
- $E.g.,$ the " \leq " relation from earlier was defined as a relation *on* the set N of natural numbers.
- The *identity relation* I_A on a set A is the set $\{(a,a)|a \in A\}.$

- Example: \leq is irreflexive.
- Note: "likes " between people is not reflexive, but not irreflexive either. (Not everyone likes themselves, but not everyone dislikes themselves either.)

Symmetry & Antisymmetry

- A binary relation R on A is symmetric iff R = *R* $^{\rm -1}$, that is, if $(a,b) \in R \leftrightarrow (b,a) \in R$.
	- $E.g., = (equality)$ is symmetric. \le is not.
	- "is married to " is symmetric, "likes $"$ is not.
- A binary relation R is *antisymmetric* if $(a,b) \in R \rightarrow (b,a) \notin R$.

— < is antisymmetric, "likes $"$ is not.

- A relation is *intransitive* if it is not transitive.
- Examples: "is an ancestor of" is transitive.
- •• "likes" is intransitive.
- •• "is within 1 mile of" is...?

- •• $R_1 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$
- •• $R_2 = \{(1,1),(1,2),(2,1)\}$
- •• $R_3 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),$ $(3,3),(3,4),(4,4)$
- •• Which of the relations are transitive?

- A relation $R: A \rightarrow B$ is *total* if for every $a \in A$, there is at least one $b \in B$ such that $(a,b) \in R$.
- If R is not total, then it is called *strictly partial partial*.
- A *partial relation* is a relation that *might* be strictly partial. Or, it might be total. (In other words, all relations are considered "partial.")

- *R* is *antifunctional* if its inverse relation R $^{-1}$ is functional.
	- Note: A functional relation (partial function) that is also antifunctional is an invertible partial function.
- *R* is a *total function* $R: A \rightarrow B$ if it is both functional and total, that is, for any $a \in A$, there is *exactly* 1 *b* such that $(a,b) \in R$. If R is functional but not total, then it is a *strictly partial function*.

Composite Relations

• Let $R: A \rightarrow B$, and $S: B \rightarrow C$. Then the *composite S* \circ *R* of *R* and *S* is defined as:

 $S \circ R = \{(a,c) \mid aRb \wedge bSc\}$

- Note function composition $f \circ g$ is an example.
- The n^{th} power R ^{*n*} of a relation *R* on a set *A* can be defined recursively by:

R $\mathbf{M}^0:\equiv \mathbf{I}_A\,;\quad R^{n+1}:\equiv R$ $n_{\circ}R$ for all $n \geq 0$.

- Negative powers of R can also be defined if desired, by *R* − *n* :≡ (*R* [−]1) *n*.

§8.2: *ⁿ*-ary Relations

- An *n*-ary relation R on sets A_1, \ldots, A_n written $R:A_1,\ldots,A_n$, is a subset $R \subseteq A_1 \times ... \times A_n$
- The sets A_i are called the *domains* of R.
- The *degree* of *R* is *n*.
- •• R is *functional in domain* A_i if it contains at most one *n*-tuple (\ldots, a_i, \ldots) for any value a_i within domain A_i .

Relational Databases

- A *relational database* is essentially an *n*ary relation *R*.
- A domain A_i is a *primary key* for the database if the relation R is functional in A_i .
- A *composite key* for the database is a set of domains $\{A_i, A_j, ...\}$ such that R contains at most 1 *n* -tuple (… , *a i* , … , *aj* , …) for each) for each composite value $(a_i, a_j, ...) \in A_i \times A_j \times ...$

Selection Operators

- Let *A* be any *n*-ary domain $A = A_1 \times ... \times A_n$, and let $C:A \rightarrow \{T,F\}$ be any condition (predicate) on elements (*n*-tuples) of *A*.
- Then, the *selection operator* s_c is the operator that maps any (*n*-ary) relation *R* on *A* to the *n*-ary relation of all *n*-tuples from *R* that satisfy C .

$$
-I.e., \forall R \subseteq A, s_C(R) = R \cap \{a \in A \mid s_C(a) = T\}
$$

$$
8.2 - n\text{-ary Relations}
$$

Selection Operator Example

- Suppose we have a domain $A = \text{StudentName} \times \text{Standing} \times \text{SocSecNos}$
- Suppose we define a certain condition on A, *UpperLevel UpperLevel*(*name*,*standing standing*,*ssn*) : ≡ $[(standing = junior) \vee (standing = senior)]$
- Then, $s_{UpperLevel}$ is the selection operator that takes any relation R on A (database of students) and *R* on *A* (database of students) and produces a relation consisting of *just* the upperlevel classes (juniors and seniors).

Projection Operators

• Let $A = A_1 \times ... \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, \ldots, i_m)$ be a sequence of indices all falling in the range 1 to *n*, $-$ That is, where $1 \leq i_k \leq n$ for all $1 \leq k \leq m$. • Then the *projection operator* on *n*-tuples is defined by: $P_{\{i_k\}}: A \to A_{i_1} \times \ldots \times A$

$$
P_{\{i_k\}}(a_1,...,a_n)=(a_{i_1},...,a_{i_m})
$$

§ 8.2 – *ⁿ*-ary Relations

Projection Example

- Suppose we have a ternary (3-ary) domain *Cars* ⁼*Model*×*Year*×*Color.* (note *ⁿ*=3).
- •• Consider the index sequence $\{i_k\} = 1,3$. (*m*=2)
- Then the projection P_{i_k} simply maps each tuple $(a_1, a_2, a_3) = (model, \text{year}, \text{color})$ to its image: $\{i_k\}$ $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$ a_{i_1}, a_{i_2} $) = (a_{1}, a_{3}) = (model, color)$
- This operator can be usefully applied to a whole relation *R⊆Cars* (database of cars) to obtain a list of model/color combinations available.

§8.3: Representing Relations

- Some ways to represent *n*-ary relations:
	- With an explicit list or table of its tuples.
	- $-$ With a function from the domain to $\{T, F\}$.
		- Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
	- With a zero-one matrix.
	- With a directed graph.

Using Zero-One Matrices

- To represent a relation R by a matrix $M_R = [m_{ij}]$, let $m_{ij} = 1$ if ($(a_i, b_j) \in R$, else 0.
- *E.g.*, Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- The 0-1 matrix representation of that "Likes" relation: $\overline{}$ Mark Joe

Zero-One Reflexive, Symmetric

- Terms: *Reflexive*, non-*Reflexive*, *irreflexive*, symmetric, asymmetric, and antisymmetric.
	- These relation characteristics are very easy to These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

(c)2001-2003, Michael P. Frank $\S 8.3 -$ Representing Relations 33

(c)2001-2003, Michael P. Frank \S 8.3 – Representing Relations 34

Using Directed Graphs

•• A *directed graph* or *digraph* $G=(V_G,E_G)$ is a set V_G of *vertices (nodes)* with a set $E_G \subseteq V_G \times V_G$ of *edges (arcs, links)*. Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R: A \leftrightarrow B$ can be represented as a graph $G_R = (V_G = A \cup B, E_G = R)$.

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

§8.4: Closures of Relations

- •• For any property X, the "X closure $\ddot{\hspace{0.5cm}}$ of a set A is defined as $\ddot{\hspace{0.5cm}}$ the "smallest" superset of A that has the given property.
- •• The *reflexive closure* of a relation R on A is obtained by adding (a,a) to R for each $a \in A$. I.e., it is $R \cup I_A$
- •• The *symmetric closure* of R is <u>obtained</u> by adding (b,a) to *R* for each (a,b) in *R*. *I.e.*, it is $R \cup R$ −1
- •• The *transitive closure* or *connectivity relation* of R is obtained by repeatedly adding (a, c) to R for each $(a,b),(b,c)$ in R .

$$
- \text{ I.e., it is } \boxed{R^* = \bigcup_{n \in \mathbb{Z}^+} R^n}
$$

Paths in Digraphs/Binary Relations

- •• A *path* of length *n* from node *a* to *b* in the directed graph G (or the binary relation R) is a sequence $(a, x_1), (x_1, x_2), ..., (x_{n-1}, b)$ of *n* ordered pairs in E_G $(\text{or } R).$
	- An empty sequence of edges is considered a path of length 0 from *a* to *a*.
	- If any path from *a* to *b* exists, then we say that *a* is *connected to b.* ("You can get there from here.")
- •**•** A path of length *n*≥1 from *a* to *a* is called a *circuit* or a cycle.
- Note that there exists a path of length *n* from *a* to *b* in *R* if and only if $(a,b) \in R$ *n*.

Simple Transitive Closure Alg.

A procedure to compute A procedure to compute *R* * with 0-1 matrices. **procedure procedure** *transClosure transClosure* (**M** *^R*:rank *- n* 0 -1 mat.) 1 mat.) $\mathbf{A} := \mathbf{B} := \mathbf{M}_R;$ $$ $A := A \odot M_R$; $B := B \vee A$ {join} **endreturn BB** {Alg. takes $\Theta(n^4)$ time} {note **A** represents *Ri* }

A Faster Transitive Closure Alg.

procedure procedure *transClosure transClosure* (**M** *^R*:rank *- n* 0 -1 mat.) 1 mat.) $\mathbf{A} := \mathbf{B} := \mathbf{M}_R;$ for $i := 1 \text{ to } \lceil \log_2$ *n* **begin** $A := A \odot A; \qquad \{A \text{ represents } R^2\}$ $\mathbf{B} := \mathbf{B} \vee \mathbf{A}$ {"add" $\mathbf{M}_R^{[2^i]}$ into \mathbf{B} } **endreturn B** {Alg. takes only $\Theta(n^3 \log n)$ time} 2*i*

Roy-Warshall Algorithm

• Uses only $\Theta(n^3)$ operations! **Procedure Procedure** *Warshall Warshall*(**M** *R* : rank -*n* 0-1 matrix) $\mathbf{W} := \mathbf{M}_R$ **for***k* := 1 **to** *n***for***i* := 1 **to** *n***for** *j* := 1 **to** *n* $w^{}_{ij} := w^{}_{ij} \vee (w^{}_{ik}$ \bigwedge $\left(W_{kj}\right)$ return W {this represents R * } w_{ij} = 1 means there is a path from *i* to *j* going only through nodes $\leq k$

(c)2001-2003, Michael P. Frank \S 8.4 – Closures of Relations 42

§8.5: Equivalence Relations

- •• An *equivalence relation* (e.r.) on a set A is simply any binary relation on A that is reflexive, symmetric, and transitive.
	- $E.g.,$ = itself is an equivalence relation.
	- $-$ For any function $f:A \rightarrow B$, the relation "have the same f value", or = $\{a_1, a_2\}$ | $f(a_1) = f(a_2)$ } is an equivalence relation, *e.g.*, let *m*="mother of'' then $^{\circ}$ $=$ _{*m*} = "have the same mother" is an e.r.

Equivalence Relation Examples

- •"Strings a and b are the same length."
- •"Integers a and b have the same absolute value. "
- •• "Real numbers a and b have the same fractional part (*i.e., a* $-b \in \mathbb{Z}$)."
- •• "Integers *a* and *b* have the same residue modulo *^m*." (for a given (for a given *^m*>1)

Equivalence Classes

- Let R be any equiv. rel. on a set A .
- The *equivalence class* of a, $[a]_R := \{ b \mid aRb \}$ (optional subscript R)
	- $-$ It is the set of all elements of A that are "equivalent" to *a* according to the eq.rel. *R*.
	- $-$ Each such b (including a itself) is called a *representative* of $[a]_R$.
- •• Since $f(a)$ = $[a]_R$ is a function of a, any equivalence relation R be defined using $aRb :=$ ""*a* and *b* have the same *f* value", given that *f*.

Equivalence Class Examples

- •"Strings *a* and *b* are the same length." $[a]$ = the set of all strings of the same length as *a*.
- "Integers *a* and *b* have the same absolute value." $-$ [a] = the set $\{a,$ *a* }
- "Real numbers *a* and *b* have the same fractional part (*i.e.*, *a* − $-b \in \mathbb{Z}$)."

 $[a]$ = the set $\{..., a-2, a-1, a, a+1, a+2, ...\}$

• "Integers *a* and *b* have the same residue modulo *m*." (for a given *m*>1)

 $-$ [*a*] = the set $\{..., a\}$ 2 *m*, *a* − $-m, a, a+m, a+2m, \ldots\}$

- The A_i 's are all disjoint and their union $=A$.
- They "partition" the set into pieces. Within each piece, all members of the set are equivalent to each other.