by Mingfu LI, CGUEE

Chapter 8: Relations

(c)2001-2003, Michael P. Frank

§8.1: Relations and Properties

- Let *A*, *B* be any two sets.
- A *binary relation R* from *A* to *B*, written (with signature) $R:A \leftrightarrow B$, is a subset of $A \times B$.

 $- E.g., \text{ let } < : \mathbf{N} \leftrightarrow \mathbf{N} :\equiv \{(n,m) \mid n < m\}$

• The notation a R b or aRb means $(a,b) \in R$.

 $- E.g., a < b \text{ means } (a,b) \in <$

- If *aRb* we may say "*a* is related to *b* (by relation *R*)", or "*a* relates to *b* (under relation *R*)".
- A binary relation *R* corresponds to a predicate function *P_R:A×B→*{**T**,**F**} defined over the 2 sets *A*,*B*; *e.g.*, "eats" :≡ {(*a*,*b*)| organism *a* eats food *b*}

Complementary Relations

- Let $R: A \leftrightarrow B$ be any binary relation.
- Then, *K*:*A*↔*B*, the *complement* of *R*, is the binary relation defined by *K*:≡ {(*a*,*b*) | (*a*,*b*)∉*R*} = (*A*×*B*) *R*Note this is just *R* if the universe of discourse is *U* = *A*×*B*; thus the name *complement*.
- Note the complement of \mathcal{R} is R.

Example: $\measuredangle = \{(a,b) \mid (a,b) \notin \$

Inverse Relations

• Any binary relation $R:A \leftrightarrow B$ has an *inverse* relation $R^{-1}:B \leftrightarrow A$, defined by $R^{-1}:\equiv \{(b,a) \mid (a,b) \in R\}.$

 $E.g., <^{-1} = \{(b,a) \mid a < b\} = \{(b,a) \mid b > a\} = >.$

• *E.g.*, if *R*:People→Foods is defined by $aRb \Leftrightarrow a \ eats \ b$, then: $b \ R^{-1} a \Leftrightarrow b \ is \ eaten \ by \ a$. (Passive voice.)

Relations on a Set

- A (binary) relation from a set A to itself is called a relation *on* the set A.
- *E.g.*, the "<" relation from earlier was defined as a relation *on* the set N of natural numbers.
- The *identity relation* I_A on a set A is the set $\{(a,a)|a \in A\}$.

- Note "*irreflexive*" \neq "*not reflexive*"!
- Example: < is irreflexive.
- Note: "likes" between people is not reflexive, but not irreflexive either. (Not everyone likes themselves, but not everyone dislikes themselves either.)

Symmetry & Antisymmetry

- A binary relation R on A is symmetric iff R= R^{-1} , that is, if $(a,b) \in R \leftrightarrow (b,a) \in R$.
 - -E.g., = (equality) is symmetric. < is not.
 - "is married to" is symmetric, "likes" is not.
- A binary relation *R* is *antisymmetric* if $(a,b) \in R \rightarrow (b,a) \notin R$.

- < is antisymmetric, "likes" is not.</p>

- A relation is *intransitive* if it is not transitive.
- Examples: "is an ancestor of" is transitive.
- "likes" is intransitive.
- "is within 1 mile of" is...?

- $R_1 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$
- $R_2 = \{(1,1),(1,2),(2,1)\}$
- $R_3 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
- Which of the relations are transitive?

- A relation $R:A \leftrightarrow B$ is *total* if for every $a \in A$, there is at least one $b \in B$ such that $(a,b) \in R$.
- If *R* is not total, then it is called *strictly partial*.
- A *partial relation* is a relation that *might* be strictly partial. Or, it might be total. (In other words, all relations are considered "partial.")

- A relation R:A↔B is *functional* (that is, it is also a partial function R:A→B) if, for any a∈A, there is at most 1 b∈B such that (a,b)∈R.
- *R* is *antifunctional* if its inverse relation R^{-1} is functional.
 - Note: A functional relation (partial function) that is also antifunctional is an invertible partial function.
- *R* is a *total function* $R:A \rightarrow B$ if it is both functional and total, that is, for any $a \in A$, there is *exactly* 1 *b* such that $(a,b) \in R$. If *R* is functional but not total, then it is a *strictly partial function*.

Composite Relations

• Let $R:A \leftrightarrow B$, and $S:B \leftrightarrow C$. Then the *composite* $S \circ R$ of R and S is defined as:

 $S \circ R = \{(a,c) \mid aRb \land bSc\}$

- Note function composition $f \circ g$ is an example.
- The *n*th power *R*^{*n*} of a relation *R* on a set *A* can be defined recursively by:

 $R^0 :\equiv \mathbf{I}_A; \quad \mathbf{R}^{n+1} :\equiv \mathbf{R}^n \circ \mathbf{R} \quad \text{for all } n \ge 0.$

- Negative powers of *R* can also be defined if desired, by $R^{-n} :\equiv (R^{-1})^n$.

§8.2: *n*-ary Relations

- An *n*-ary relation *R* on sets A_1, \ldots, A_n , written $R:A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \ldots \times A_n$.
- The sets A_i are called the *domains* of R.
- The *degree* of *R* is *n*.
- *R* is *functional in domain A_i* if it contains at most one *n*-tuple (..., a_i,...) for any value a_i within domain A_i.

Relational Databases

- A *relational database* is essentially an *n*-ary relation *R*.
- A domain A_i is a *primary key* for the database if the relation R is functional in A_i .
- A composite key for the database is a set of domains {A_i, A_j, ...} such that R contains at most 1 *n*-tuple (...,a_i,...,a_j,...) for each composite value (a_i, a_j,...) ∈A_i×A_j×...

Selection Operators

- Let *A* be any *n*-ary domain $A=A_1 \times ... \times A_n$, and let $C:A \rightarrow \{T,F\}$ be any condition (predicate) on elements (*n*-tuples) of *A*.
- Then, the *selection operator* s_C is the operator that maps any (*n*-ary) relation *R* on *A* to the *n*-ary relation of all *n*-tuples from *R* that satisfy *C*.

$$-I.e., \forall R \subseteq A, s_{C}(R) = R \cap \{a \in A \mid s_{C}(a) = \mathbf{T}\}$$

Selection Operator Example

- Suppose we have a domain
 A = StudentName × Standing × SocSecNos
- Suppose we define a certain condition on A, *UpperLevel(name,standing,ssn)* :≡ [(standing = junior) ∨ (standing = senior)]
- Then, *s_{UpperLevel}* is the selection operator that takes any relation *R* on *A* (database of students) and produces a relation consisting of *just* the upper-level classes (juniors and seniors).

Projection Operators

Let A = A₁×...×A_n be any *n*-ary domain, and let {i_k}=(i₁,...,i_m) be a sequence of indices all falling in the range 1 to n,
That is, where 1 ≤ i_k ≤ n for all 1 ≤ k ≤ m.
Then the *projection operator* on *n*-tuples P_{i_k}: A → A_{i₁}×...×A_{i_m} is defined by: P_{i_k}(a₁,...,a_n) = (a_{i₁},...,a_{i_m})

Projection Example

- Suppose we have a ternary (3-ary) domain *Cars=Model*×*Year*×*Color*. (note *n*=3).
- Consider the index sequence $\{i_k\}=1,3.$ (*m*=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1, a_2, a_3) = (model, year, color)$ to its image: $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$
- This operator can be usefully applied to a whole relation $R \subseteq Cars$ (database of cars) to obtain a list of model/color combinations available.

§8.3: Representing Relations

- Some ways to represent *n*-ary relations:
 - With an explicit list or table of its tuples.
 - With a function from the domain to $\{T, F\}$.
 - Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

Using Zero-One Matrices

- To represent a relation *R* by a matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ if $(a_i, b_j) \in R$, else 0.
- *E.g.*, Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- The 0-1 matrix representation of that "Likes" relation:

Zero-One Reflexive, Symmetric

- Terms: *Reflexive*, *non-Reflexive*, *irreflexive*, *symmetric*, *asymmetric*, *and antisymmetric*.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

(c)2001-2003, Michael P. Frank

§ 8.3 – Representing Relations

(c)2001-2003, Michael P. Frank

§ 8.3 – Representing Relations

Using Directed Graphs

A directed graph or digraph G=(V_G,E_G) is a set V_G of vertices (nodes) with a set E_G⊆V_G×V_G of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation R:A↔B can be represented as a graph G_R=(V_G=A∪B, E_G=R).

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

§8.4: Closures of Relations

- For any property *X*, the "*X* closure" of a set *A* is defined as the "smallest" superset of *A* that has the given property.
- The *reflexive closure* of a relation *R* on *A* is obtained by adding (a,a) to *R* for each $a \in A$. *I.e.*, it is $\overline{R \cup I_A}$
- The *symmetric closure* of *R* is obtained by adding (b,a) to *R* for each (a,b) in *R*. *I.e.*, it is $R \cup R^{-1}$
- The *transitive closure* or *connectivity relation* of *R* is obtained by repeatedly adding (*a*,*c*) to *R* for each (*a*,*b*),(*b*,*c*) in *R*.

I.e., it is
$$R^* = \bigcup_{n \in \mathbb{Z}^+} R^n$$

Paths in Digraphs/Binary Relations

- A *path* of length *n* from node *a* to *b* in the directed graph *G* (or the binary relation *R*) is a sequence $(a,x_1), (x_1,x_2), \dots, (x_{n-1},b)$ of *n* ordered pairs in E_G (or *R*).
 - An empty sequence of edges is considered a path of length 0 from a to a.
 - If any path from a to b exists, then we say that a is connected to b. ("You can get there from here.")
- A path of length n≥1 from a to a is called a circuit or a cycle.
- Note that there exists a path of length *n* from *a* to *b* in *R* if and only if $(a,b) \in \mathbb{R}^n$.

Simple Transitive Closure Alg.

A procedure to compute R^* with 0-1 matrices. **procedure** *transClosure*(**M**_{*R*}:rank-*n* 0-1 mat.) $\mathbf{A} := \mathbf{B} := \mathbf{M}_{R};$ for i := 2 to n begin $\mathbf{A} := \mathbf{A} \odot \mathbf{M}_{R}; \quad \mathbf{B} := \mathbf{B} \lor \mathbf{A}$ {join} {note A represents R^i } end {Alg. takes $\Theta(n^4)$ time} return **B**

A Faster Transitive Closure Alg.

procedure *transClosure*(**M**_{*R*}:rank-*n* 0-1 mat.) $\mathbf{A} := \mathbf{B} := \mathbf{M}_{R};$ for i := 1 to $\lceil \log_2 n \rceil$ begin $\mathbf{A} := \mathbf{A} \odot \mathbf{A}; \quad \{\mathbf{A} \text{ represents } R^{2^{i}} \}$ $\mathbf{B} := \mathbf{B} \lor \mathbf{A} \quad \{\text{``add'' } \mathbf{M}_{R}^{[2^{i}]} \text{ into } \mathbf{B} \}$ end **return B** {Alg. takes only $\Theta(n^3 \log n)$ time}

Roy-Warshall Algorithm

• Uses only $\Theta(n^3)$ operations! **Procedure** *Warshall*(**M**_{*R*} : rank-*n* 0-1 matrix) $\mathbf{W} := \mathbf{M}_{R}$ for k := 1 to nfor i := 1 to nfor *j* := 1 to *n* $w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})$ return W {this represents R^* } $w_{ii} = 1$ means there is a path from *i* to *j* going only through nodes $\leq k$

(c)2001-2003, Michael P. Frank

8.4 – Closures of Relations

§8.5: Equivalence Relations

- An *equivalence relation* (e.r.) on a set *A* is simply any binary relation on *A* that is reflexive, symmetric, and transitive.
 - -E.g., = itself is an equivalence relation.
 - For any function $f:A \rightarrow B$, the relation "have the same f value", or $=_f:\equiv \{(a_1,a_2) | f(a_1)=f(a_2)\}$ is an equivalence relation, *e.g.*, let m= "mother of" then $=_m$ = "have the same mother" is an e.r.

Equivalence Relation Examples

- "Strings *a* and *b* are the same length."
- "Integers *a* and *b* have the same absolute value."
- "Real numbers *a* and *b* have the same fractional part (*i.e.*, $a b \in \mathbb{Z}$)."
- "Integers *a* and *b* have the same residue modulo *m*." (for a given *m*>1)

Equivalence Classes

- Let *R* be any equiv. rel. on a set *A*.
- The *equivalence class* of *a*, $[a]_R :\equiv \{ b \mid aRb \} \quad (optional subscript R)$
 - It is the set of all elements of A that are "equivalent" to a according to the eq.rel. R.
 - Each such b (including a itself) is called a *representative* of $[a]_R$.
- Since f(a)=[a]_R is a function of a, any equivalence relation R be defined using aRb :≡ "a and b have the same f value", given that f.

Equivalence Class Examples

- "Strings *a* and *b* are the same length."
 [*a*] = the set of all strings of the same length as *a*.
- "Integers *a* and *b* have the same absolute value."
 [*a*] = the set {*a*, -*a*}
- "Real numbers *a* and *b* have the same fractional part (*i.e.*, $a b \in \mathbb{Z}$)."

 $- [a] = \text{the set } \{\dots, a-2, a-1, a, a+1, a+2, \dots\}$

 "Integers a and b have the same residue modulo m." (for a given m>1)

- [a] = the set {..., $a - 2m, a - m, a, a + m, a + 2m, ...}$

The A_i's are all disjoint and their union = A.
They "partition" the set into pieces. Within each piece, all members of the set are equivalent to each other.

e.r. on A.