Chap. 7

by Mingfu LI, CGUEE

Chapter 7: Advanced Counting Techniques

(c)2001-2003, Michael P. Frank

§7.1: Recurrence Relations

• A *recurrence relation* (R.R., or just *recurrence*) for a sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more previous elements a_0, \ldots, a_{n-1} of the sequence, for all $n \ge n_0$.

– A recursive definition, without the base cases.

• A particular sequence (described non-recursively) is said to *solve* the given recurrence relation if it is consistent with the definition of the recurrence.

- A given recurrence relation may have many solutions.

Recurrence Relation Example

- Consider the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ (n \ge 2).
- Which of the following are solutions? $a_n = 3n$ $a_n = 2^n$ $a_n = 5$

Example Applications

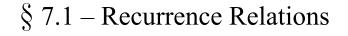
- Recurrence relation for growth of a bank account with *P*% interest per given period: $M_n = M_{n-1} + (P/100)M_{n-1}$
- Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.

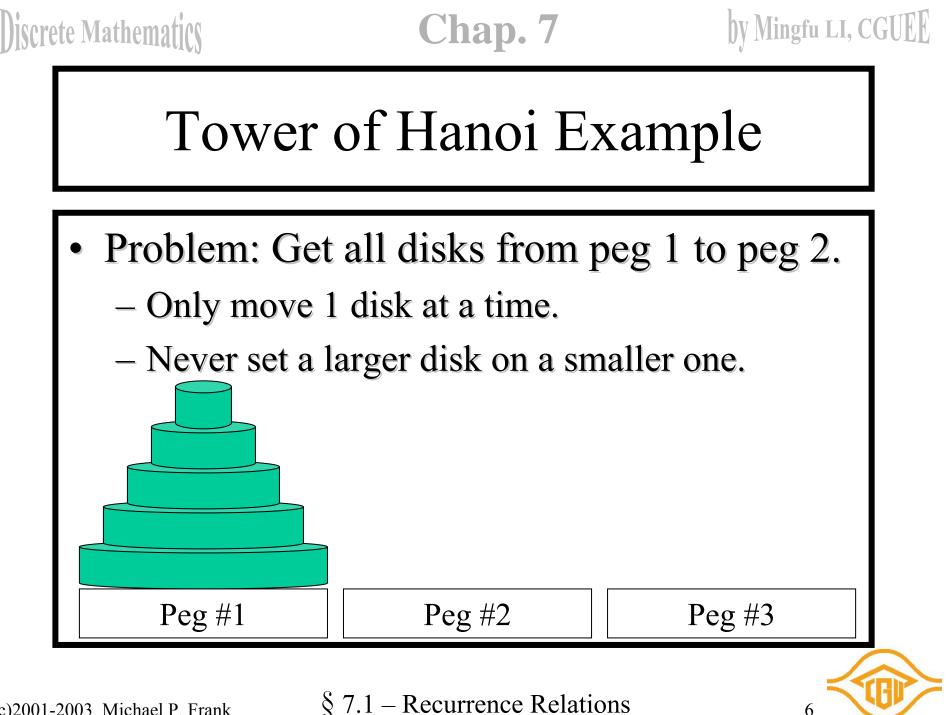
 $P_n = P_{n-1} + P_{n-2}$ (Fibonacci relation)

Solving Compound Interest RR

•
$$M_n = M_{n-1} + (P/100)M_{n-1}$$

= $(1 + P/100)M_{n-1}$
= $r M_{n-1}$ (let $r = 1 + P/100$)





(c)2001-2003, Michael P. Frank

§ 7.1 – Recurrence Relations

Hanoi Recurrence Relation

- Let $H_n = \#$ moves for a stack of *n* disks.
- Optimal strategy:
 - Move top n-1 disks to spare peg. (H_{n-1} moves)
 - Move bottom disk. (1 move)
 - Move top n-1 to bottom disk. (H_{n-1} moves)

• Note:
$$H_n = 2H_{n-1} + 1$$

Chap. 7

by Mingfu LI, CGUEE

8

Solving Tower of Hanoi RR

 $H_n = 2 H_{n-1} + 1$

(c)2001-2003, Michael P. Frank

Finding Recurrence Relation

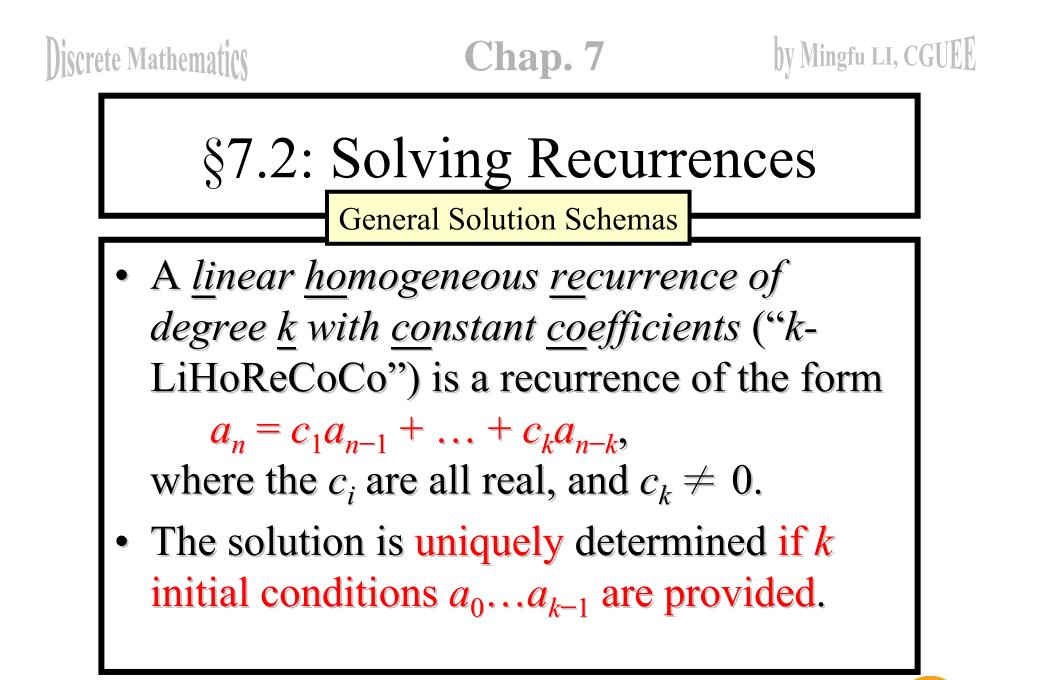
Ex: Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that do not have two consecutive 0s. How many such bit strings are there of length 5?

Codeword Enumeration

Ex:Consider a string of decimal digits a valid codeword if it contains an even number of 0 digits. For example, 1230407869 is valid, whereas 120987045608 is not valid. Let a_n be the number of valid *n*-digit codewords. Find a recurrence relation for a_n .

Catalan Numbers

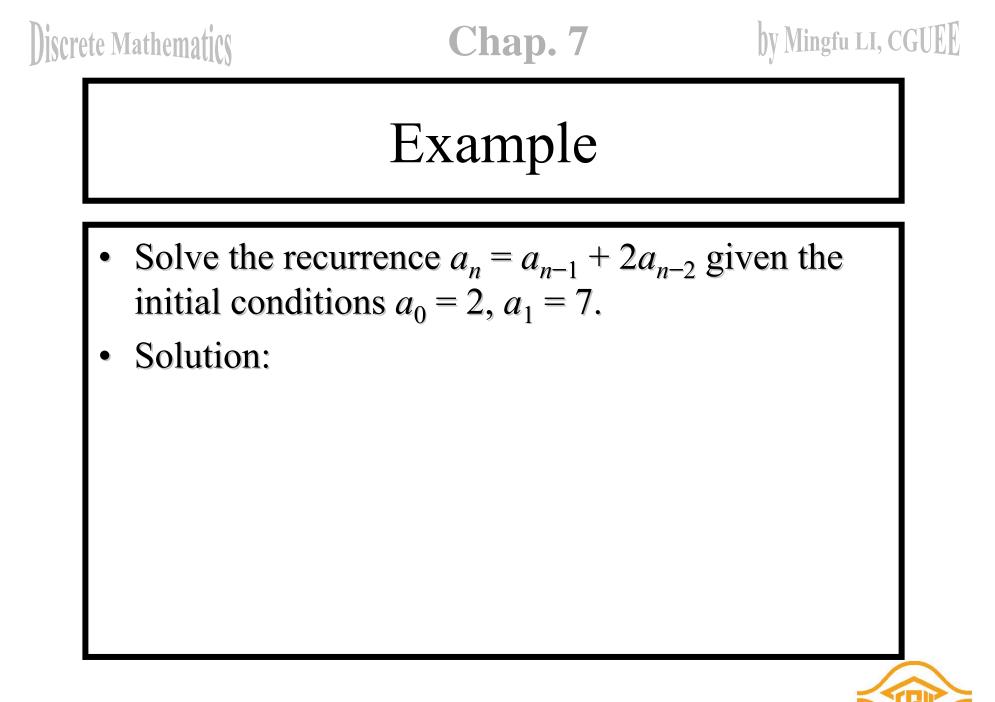
Ex: Find a recurrence relation for C_n , the number of ways to parenthesize the product of n+1 numbers, x_0, x_1, \ldots, x_n , to specify the order of multiplication. For example, $C_3 = 5$.

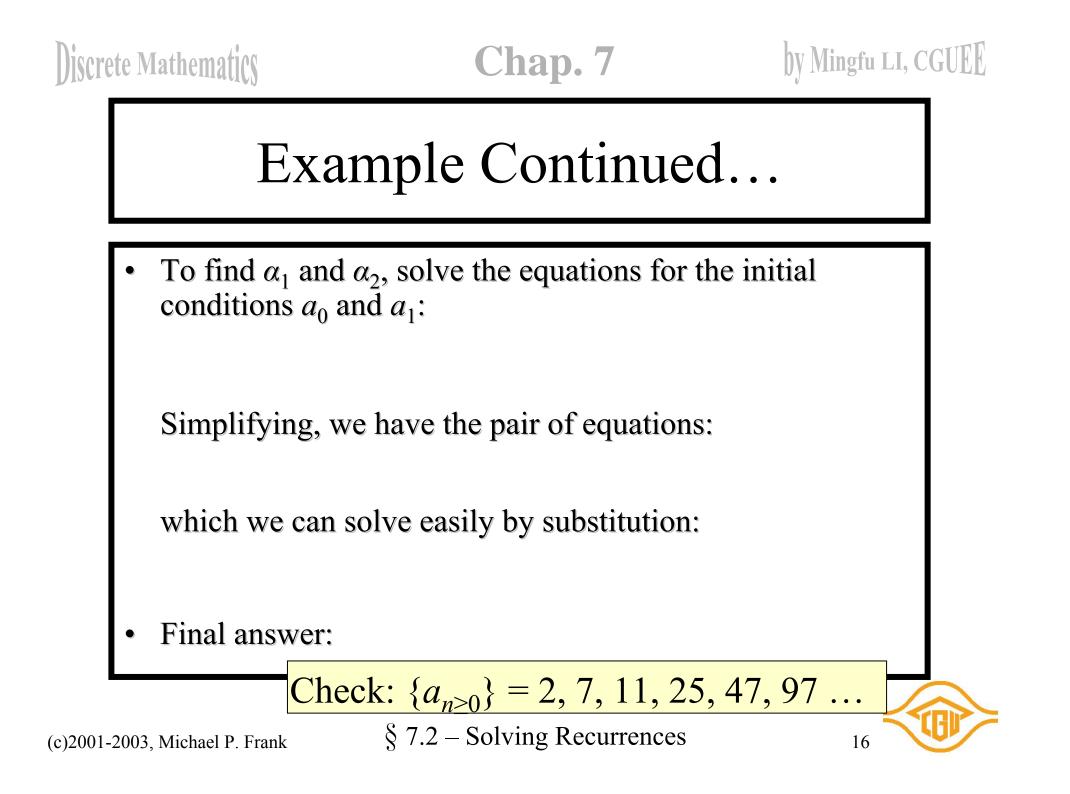


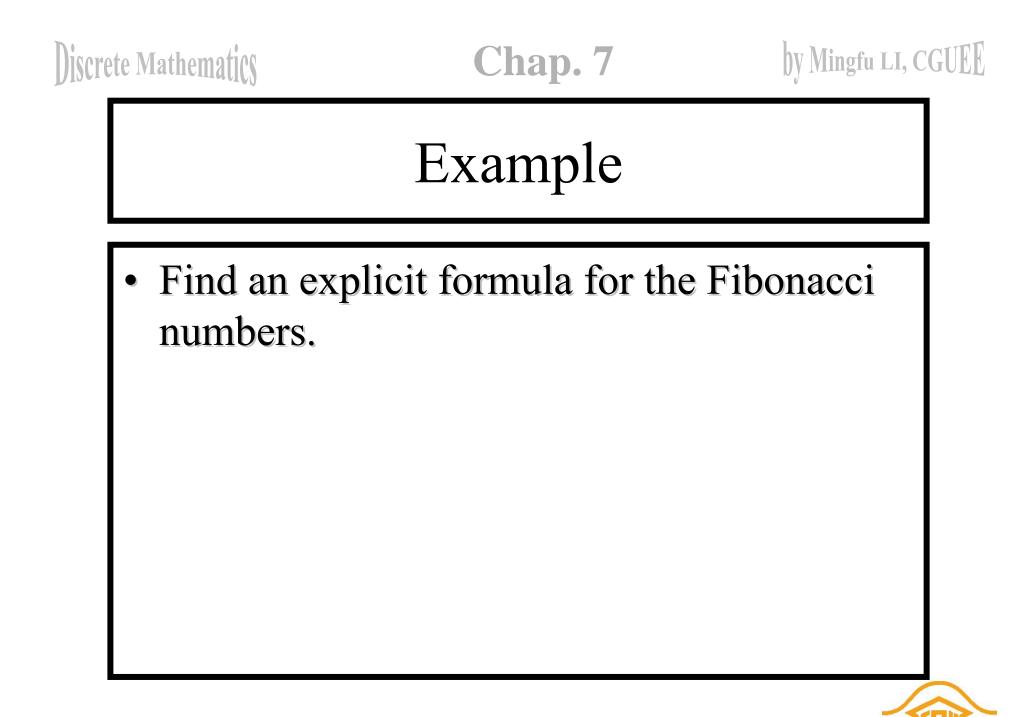
Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_n = r^n$, where *r* is a constant.
- This requires the *characteristic equation*: $r^{n} = c_{1}r^{n-1} + \dots + c_{k}r^{n-k}, i.e.,$ $r^{k} - c_{1}r^{k-1} - \dots - c_{k} = 0$
- The solutions (*characteristic roots*) can yield an explicit formula for the sequence.

- Consider an arbitrary 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$
- It has the characteristic equation (C.E.): $r^2 - c_1 r - c_2 = 0$
- Thm. 1: If this CE has 2 roots $r_1 \neq r_2$, then $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \ge 0$ for some constants α_1, α_2 .





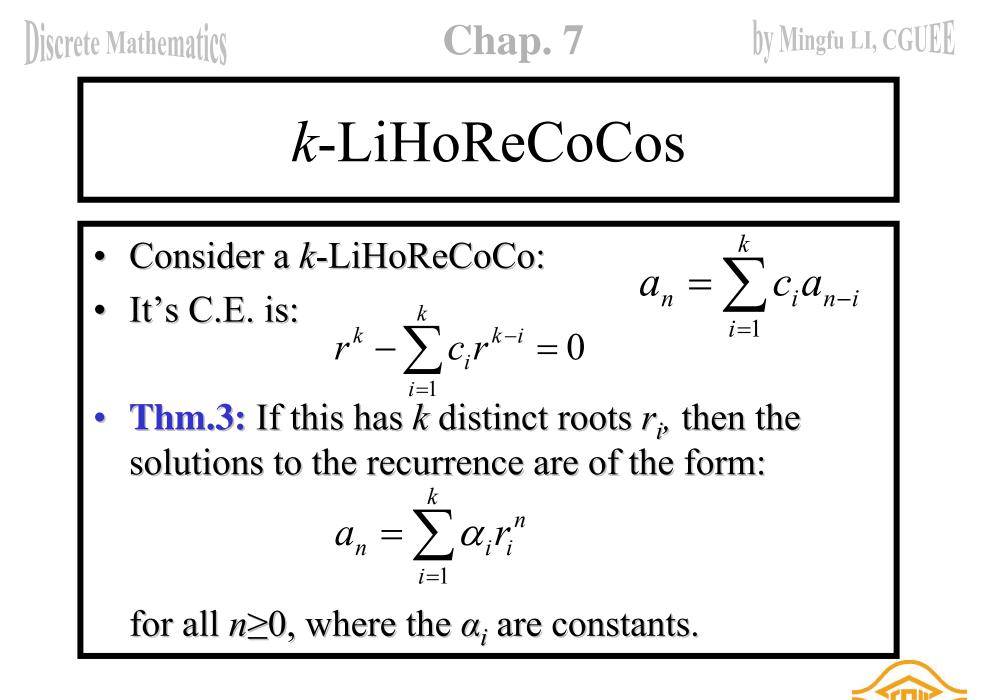


The Case of Degenerate Roots

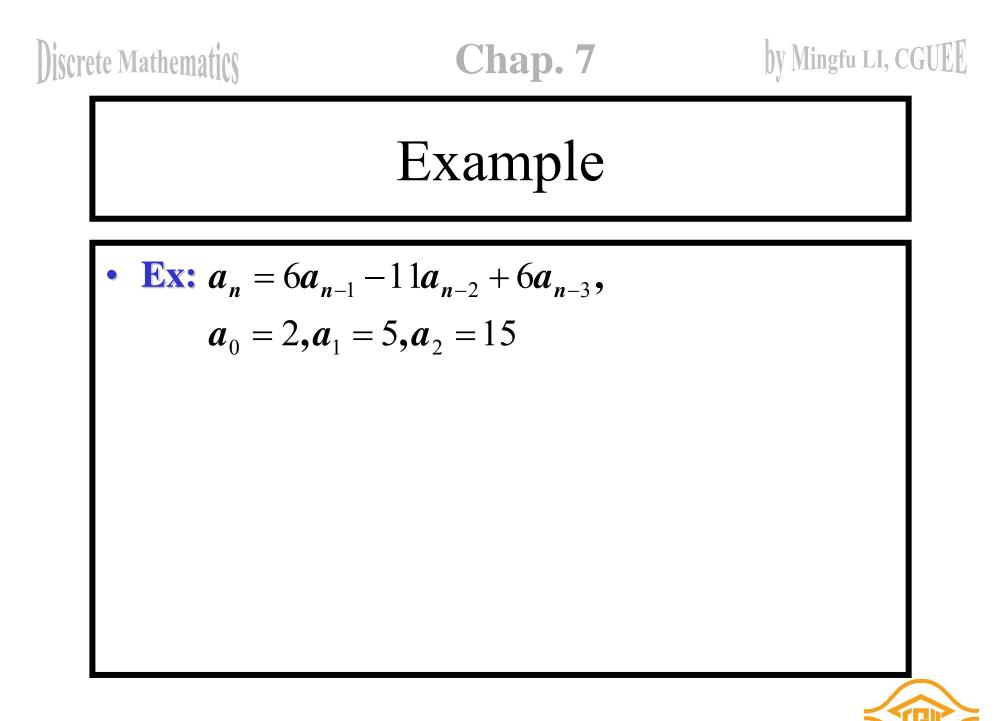
- Now, what if the C.E. $r^2 c_1 r c_2 = 0$ has only 1 root r_0 ?
- Theorem 2: Then,

 $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for all $n \ge 0$, for some constants α_1, α_2 .

• **Ex:**
$$a_n = 6a_{n-1} - 9a_{n-2}$$
, $a_0 = 1$, $a_1 = 6$



(c)2001-2003, Michael P. Frank



Degenerate k-LiHoReCoCos

• Suppose there are *t* roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then:

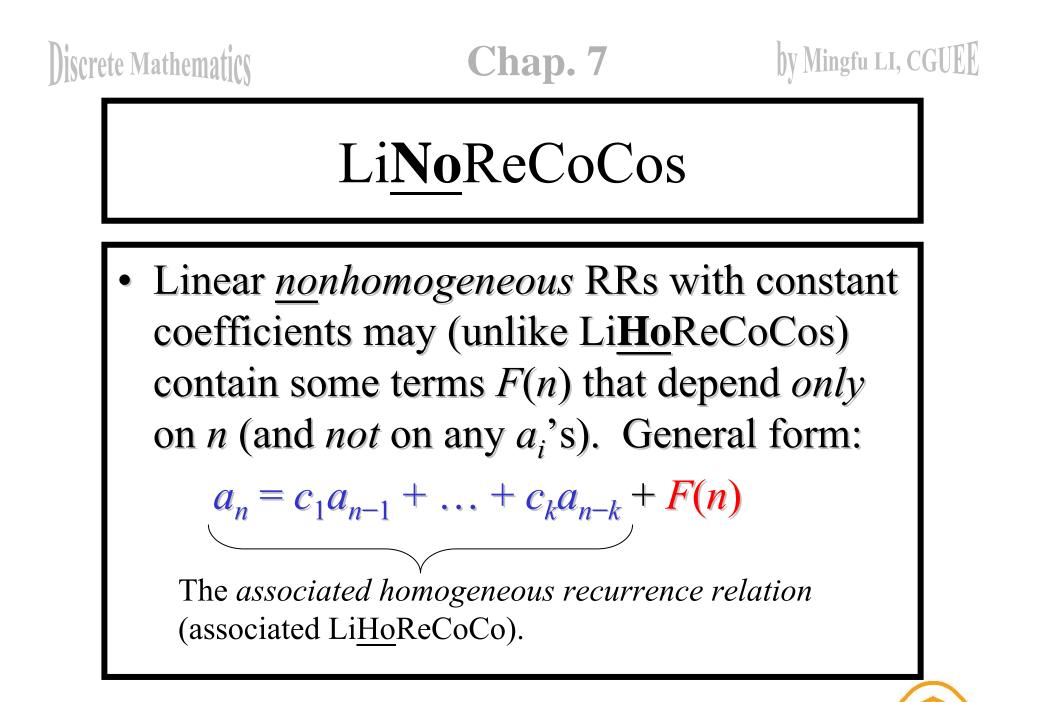
$$\alpha_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i - 1} \alpha_{i,j} n^j \right) r_i^n$$

for all $n \ge 0$, where all the α are constants.

Discrete Mathematics
 Chap. 7
 by Mingfu LI, CGUE

 Example
 • Ex:
$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
,
 $a_0 = 1, a_1 = -2, a_2 = -1$
 • $a_0 = 1, a_1 = -2, a_2 = -1$

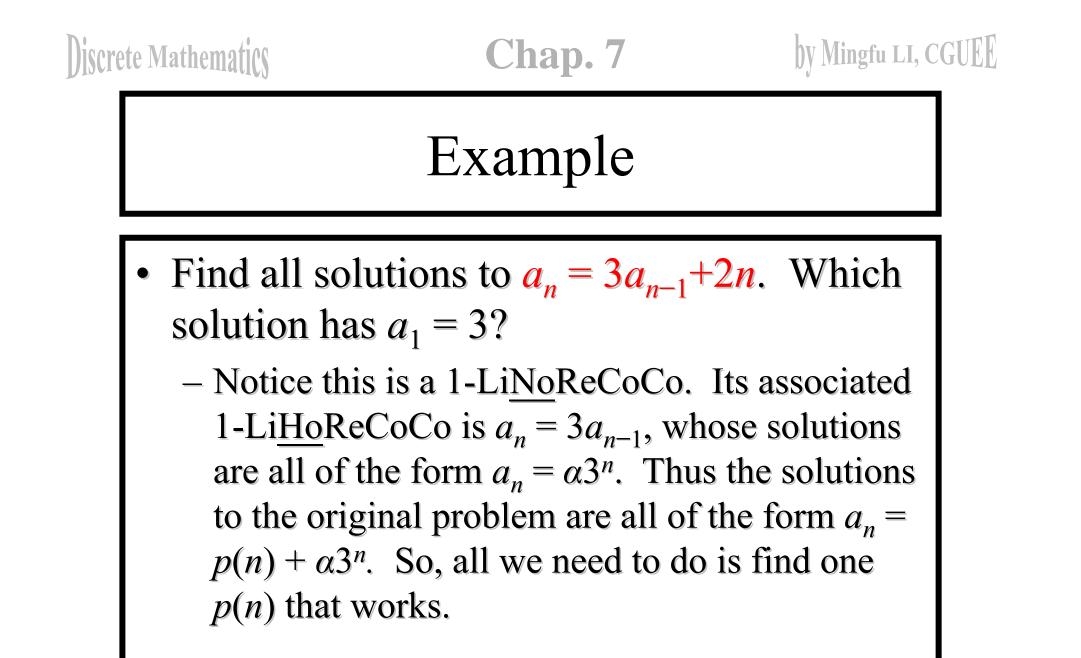
(c)2001-2003, Michael P. Frank

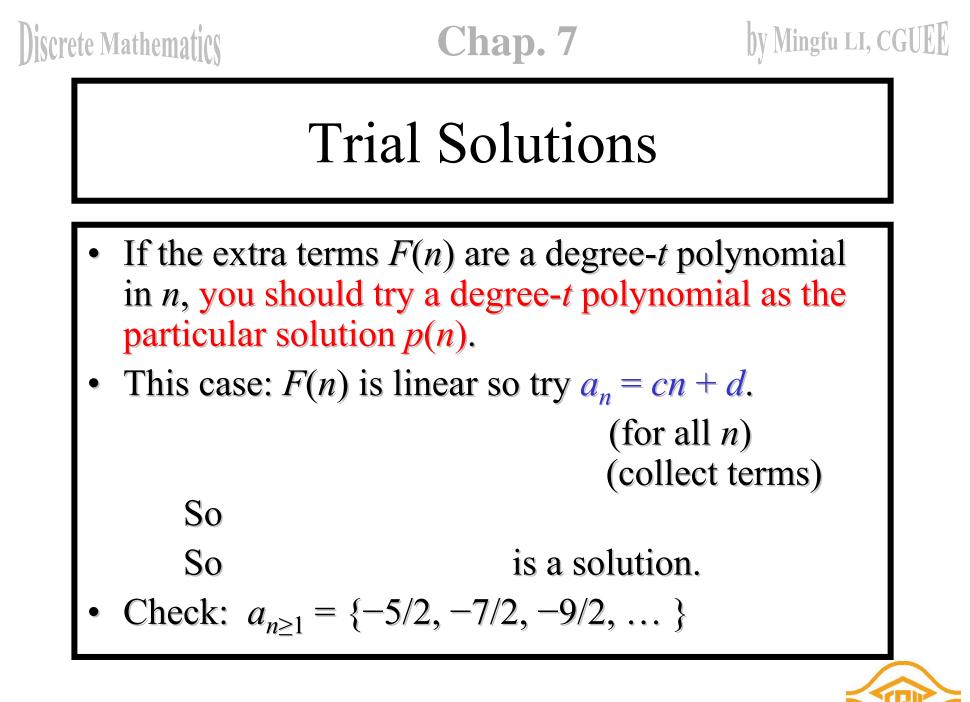


Solutions of LiNoReCoCos

• A useful theorem about LiNoReCoCos: - If $a_n = p(n)$ is any *particular* solution to the LiNoReCoCo $a_n = \left(\sum_{i=1}^k c_i a_{n-i}\right) + F(n)$ - Then *all* its solutions are of the form:

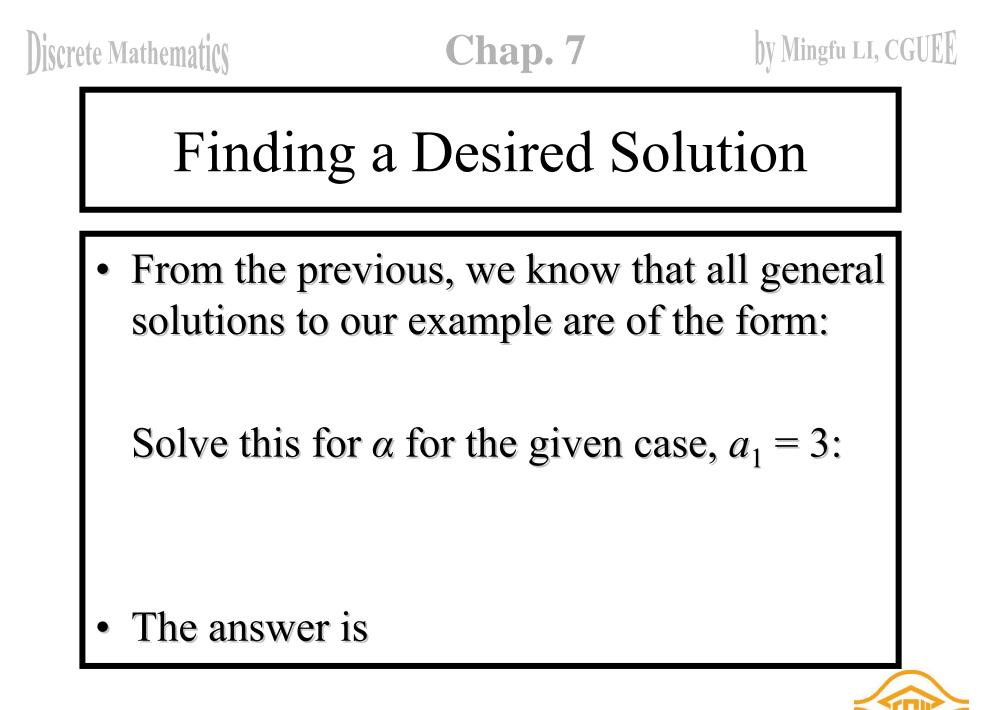
 $a_n = p(n) + h(n),$ where $a_n = h(n)$ is any solution to the associated homogeneous RR $a_n = \left(\sum_{i=1}^{k} c_i a_{n-i}\right)$

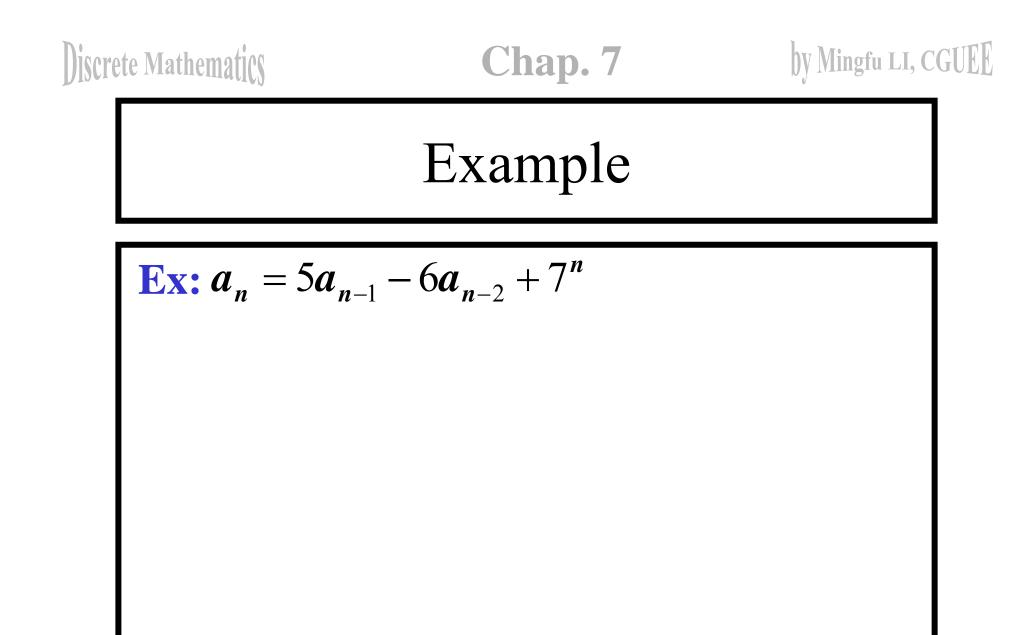




(c)2001-2003, Michael P. Frank

§ 7.2 – Solving Recurrences





§7.3: Divide & Conquer R.R.s

Main points so far:

- Many types of problems are solvable by reducing a problem of size *n* into some number *a* of independent subproblems, each of size $\leq \lfloor n/b \rfloor$, where $a \geq 1$ and b > 1.
- The time complexity to solve such problems is given by a recurrence relation:
 T(n) = a · T([n/b]) + g(n)

Divide+Conquer Examples

• **Binary search:** Break list into 1 subproblem (smaller list) (so a=1) of size $\leq \lfloor n/2 \rfloor$ (so b=2).

$$- \text{So } T(n) = T(\lceil n/2 \rceil) + c \quad (g(n) = c \text{ constant})$$

- Merge sort: Break list of length *n* into 2 sublists (*a*=2), each of size $\leq \lfloor n/2 \rfloor$ (so *b*=2), then merge them, in $g(n) = \Theta(n)$ time.
 - So $T(n) = 2T(\lceil n/2 \rceil) + cn$ (roughly, for some c)

Divide+Conquer Examples

• Finding the Maximum and Minimum: Break list into 2 sub-problem (smaller list) (so a=2) of size $\leq \lceil n/2 \rceil$ (so b=2). - So $T(n) = 2T(\lceil n/2 \rceil)+2$ (g(n)=2 constant)

Fast Multiplication Example

- The ordinary grade-school algorithm takes $\Theta(n^2)$ steps to multiply two *n*-digit numbers.
 - This seems like too much work!
- So, let's find an asymptotically *faster* multiplication algorithm!
- To find the product cd of two 2*n*-digit base-*b* numbers, $c=(c_{2n-1}c_{2n-2}...c_0)_b$ and $d=(d_{2n-1}d_{2n-2}...d_0)_b$,

First, we break c and d in half:

 $c=b^nC_1+C_0$, $d=b^nD_1+D_0$, and then... (see next slide)

Derivation of Fast Multiplication

 $cd = (b^{n}C_{1} + C_{0})(b^{n}D_{1} + D_{0})$ (Multiply out $=b^{2n}C_{1}D_{1}+b^{n}(C_{1}D_{0}+C_{0}D_{1})+C_{0}D_{0}$ polynomials) $=b^{2n}C_1D_1+C_0D_0+$ Zero $b^{n}(C_{1}D_{0} + C_{0}D_{1} + C_{1}D_{1} - C_{1}D_{1}) + C_{0}D_{0} - C_{0}D_{0})$ $=(b^{2n}+b^n)C_1D_1+(b^n+1)C_0D_0+$ $b^{n}(C_{1}D_{0}-C_{1}D_{1}-C_{0}D_{0}+C_{0}D_{1})$ $=(b^{2n}+b^n)C_1D_1+(b^n+1)C_0D_0+$ $b^{n}(C_{1}-C_{0})(D_{0}-D_{1})$ (Factor last polynomial)

(c)2001-2003, Michael P. Frank

§ 7.3 – D-C Recurrence Relations

Recurrence Rel. for Fast Mult.

Notice that the time complexity T(n) of the fast multiplication algorithm obeys the recurrence:

•
$$T(2n)=3T(n)+\Theta(n)$$

i.e.,

Time to do the needed adds & subtracts of *n*-digit and 2*n*-digit numbers

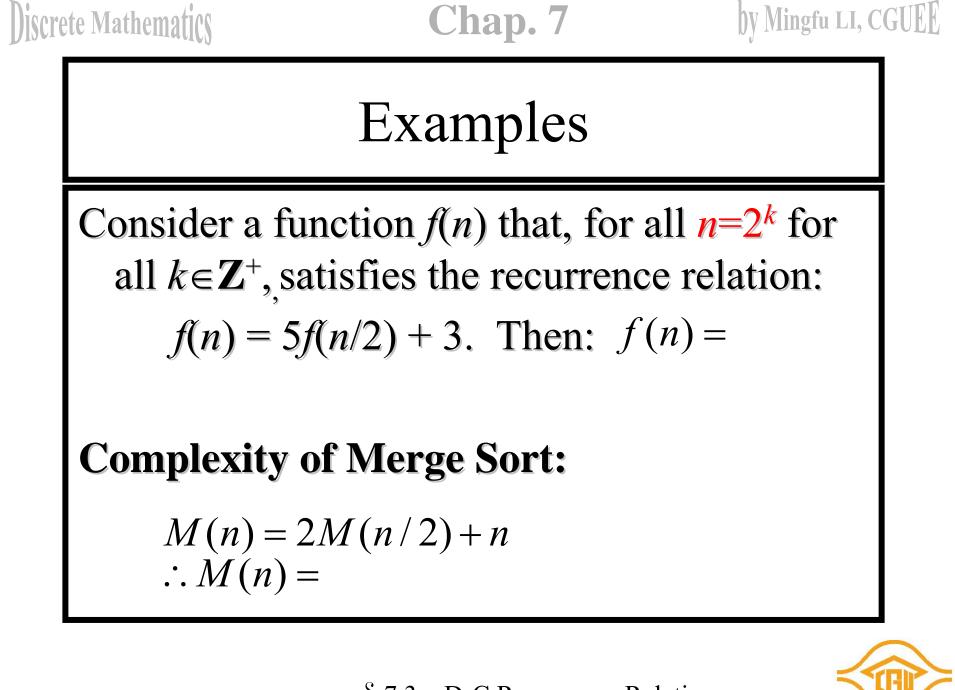
•
$$T(n)=3T(n/2)+\Theta(n)$$

So $a=3, b=2$.

The Master Theorem

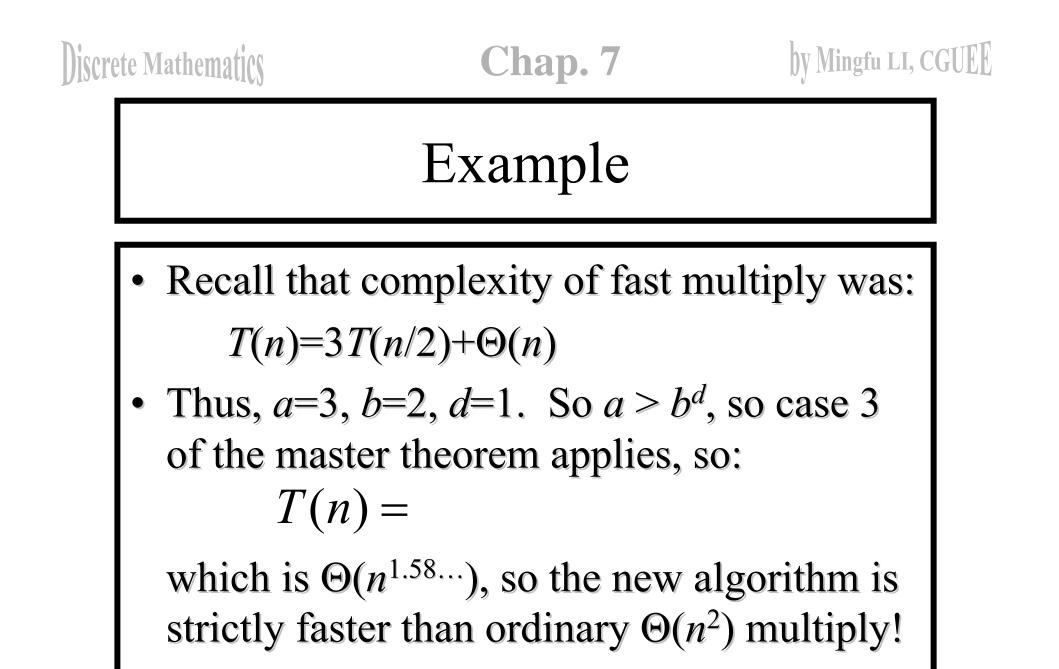
Consider a function f(n) that, for all $n=b^k$ for all $k \in \mathbb{Z}^+$, satisfies the recurrence relation: $f(n) = a f(n/b) + cn^d$ with $a \ge 1$, integer b > 1, real c > 0, $d \ge 0$. Then: $f(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log_b n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$

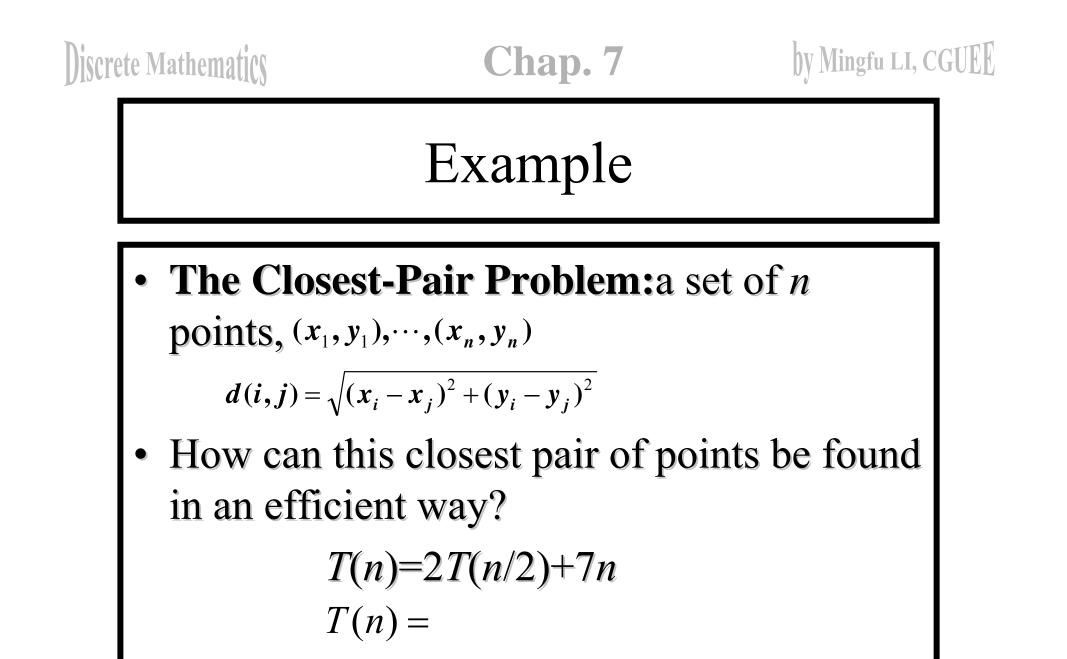
§ 7.3 – D-C Recurrence Relations

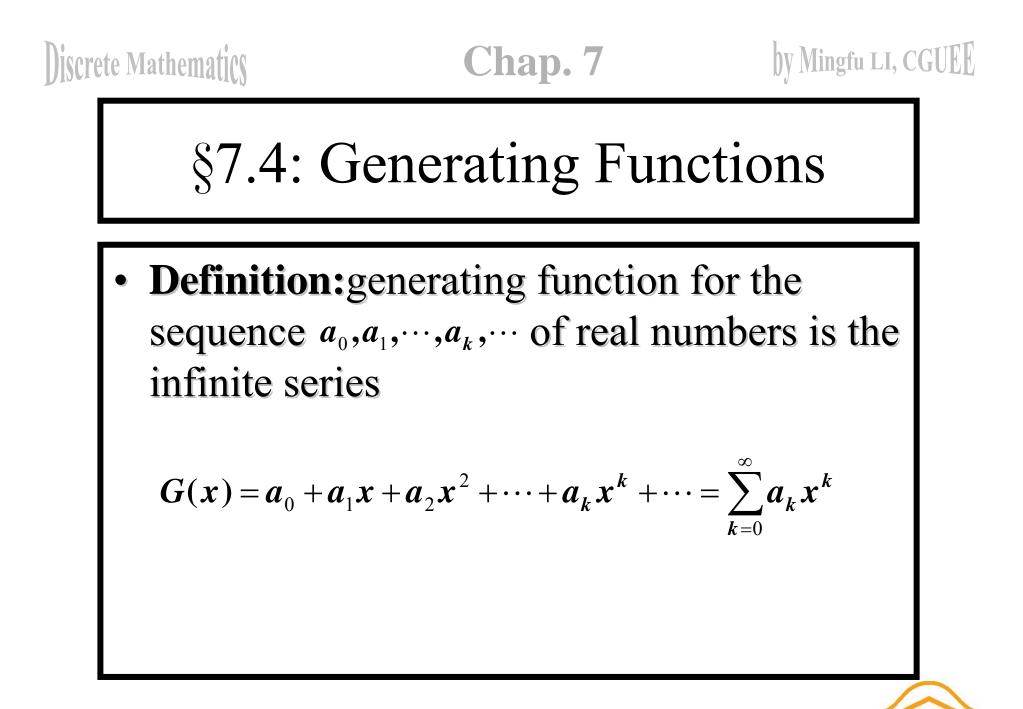


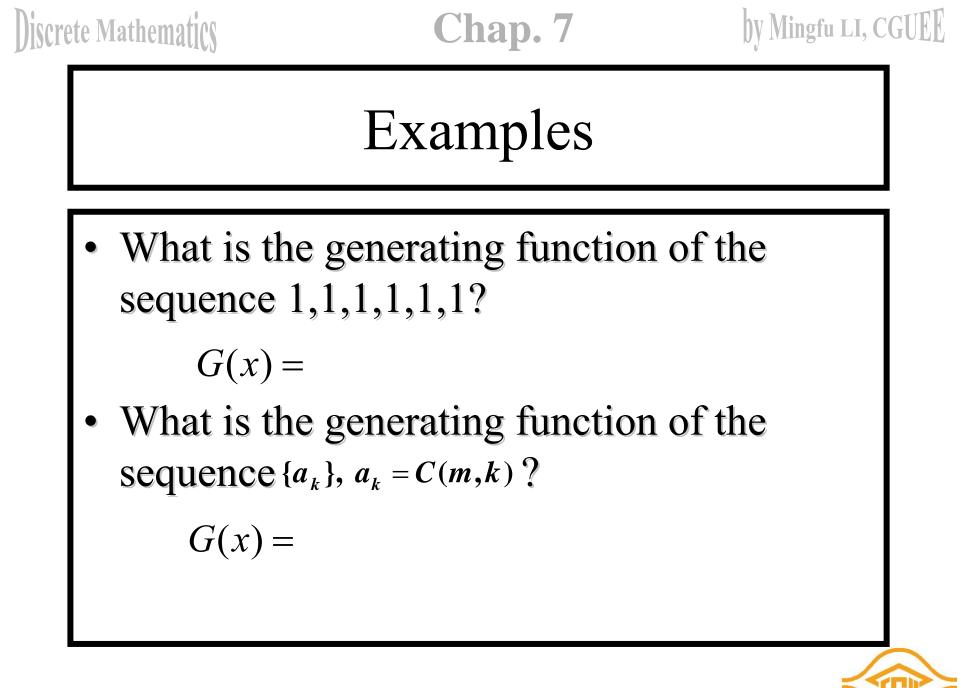
(c)2001-2003, Michael P. Frank

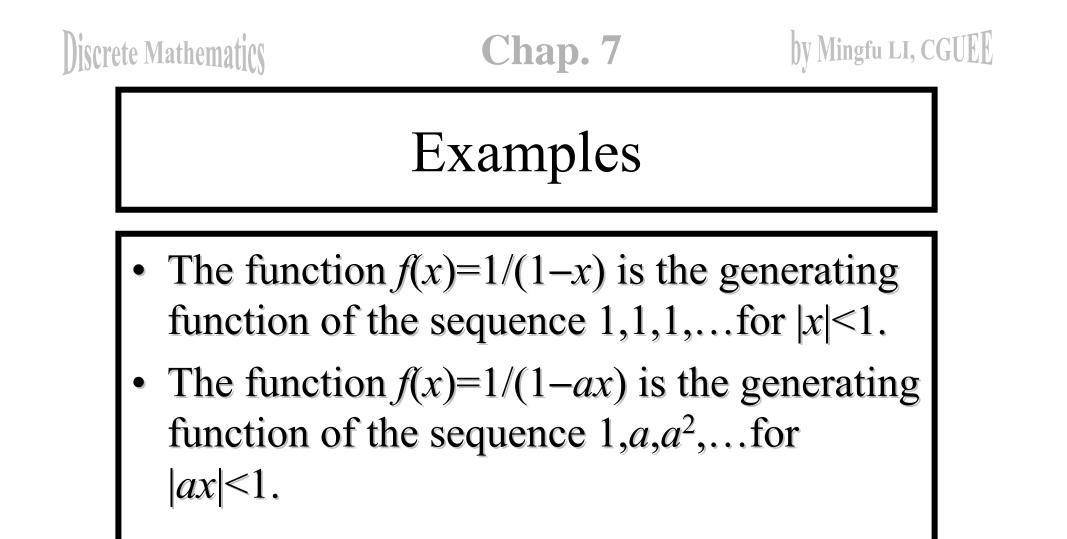
§ 7.3 – D-C Recurrence Relations







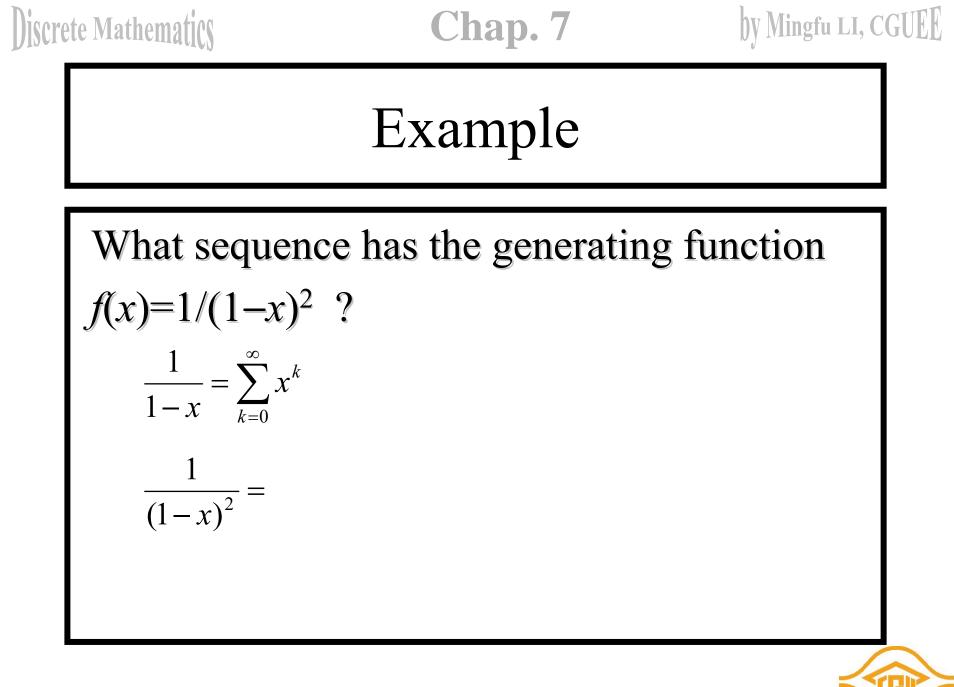




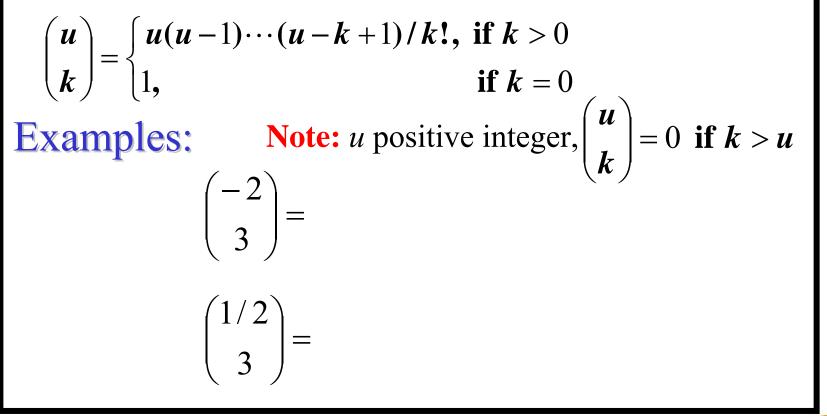
by Mingfu LI, CGUEE

Theorem

Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
, $g(x) = \sum_{k=0}^{\infty} b_k x^k$, then
 $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$, and
 $f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$
Convolution of a_k and b_k



Extended Binomial Coefficient



k

45

Extended Binomial Theorem

$$(1+x)^{u} = \sum_{k=0}^{\infty} {u \choose k} x^{k}, \quad \text{where } |x| < 1$$

Can be proved using Maclaurin series.

Examples:

$$(1+x)^{-n} = \sum_{k=0}^{\infty} {\binom{-n}{k}} x^k = \sum_{k=0}^{\infty} (-1)^k C(n+k-1,k) x^k$$

 $(1-x)^{-n} = \sum_{k=0}^{\infty} C(n+k-1,k) x^k$

§ 7.4 – Generating Functions

