Chapter 7-:

Advanced Counting Techniques
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37.1: Recurrence Relations

* A recurrence relation (R.R., or just recurrence)
for a sequence {a,} 1s an equation that expresses
a, In terms of one or more previous elements
a,, ..., a,_; of the sequence, for all n>n,,.

— A recursive definition, without the base cases.
* A particular sequence (described non-recursively)

1s said to solve the given recurrence relation 1f it 1s
consistent with the definition of the recurrence.

— A given recurrence relation may have many solutions.
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Recurrence Relation Example

 Consider the recurrence relation

an - 2an—1 o an—2 (7122)

* Which of the following are solutions?
a,=3n
a,=12"

a,=>S
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Example Applications

» Recurrence relation for growth of a bank
account with P% interest per given period:

M =M _,+ (P100)M _,
» Growth of a population 1n which each

organism yields 1 new one every period
starting 2 periods after its birth.

P =P _,+ P, _, (Fibonaccirelation)
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Solving Compound Interest RR

e M =M_, +(PI100M, _,
=(1+P/100) M, _,
=rM, (let »= 1 + P/100)
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Tower of Hano1 Example

* Problem: Get all disks from peg 1 to peg 2.

— Only move 1 disk at a time.
— Never set a larger disk on a smaller one.
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Hanoi1 Recurrence Relation

» Let H = # moves for a stack of n disks.

* Optimal strategy:
— Move top n—1 disks to spare peg. (H,_, moves)
— Move bottom disk. (1 move)
— Move top n—1 to bottom disk. (H,_, moves)

* Note: H =2H _,+1
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Solving Tower of Hano1 RR
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Finding Recurrence Relation

EX: Find a recurrence relation and give initial
conditions for the number of bit strings of length
n that do not have two consecutive 0s. How many
such bit strings are there of length 5?

(¢)2001-2003, Michael P. Frank § 7.1 — Recurrence Relations 9



Codeword Enumeration

Ex:Consider a string of decimal digits a valid
codeword if it contains an even number of 0
digits. For example, 1230407869 1s valid, whereas

120987045608 1s not valid. Let a, be the number
of valid n-digit codewords. Find a recurrence

relation for a, .
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Catalan Numbers

EX: Find a recurrence relation for C, , the number of
ways to parenthesize the product of n+1 numbers,
X0, X1-- -5 X,,, t0 specify the order of multiplication.
For example, C; = 5.
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§7.2: Solving Recurrences

General Solution Schemas

* A linear homogeneous recurrence of
degree k with constant coefficients (“k-
LiHoReCoCo”) 1s a recurrence of the form

a,=c¢a, t..+tca,,,

where the ¢, are all real, and ¢, # 0.

» The solution 1s uniquely determined if &
initial conditions q,...q,_, are provided.
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Solving LiHoReCoCos

 Basic idea: Look for solutions of the form
a, = r", where r 1s a constant.

» This requires the characteristic equation:
r=crml+ et e,

k— ookl — . —
r~—ocr .— ¢, =0

» The solutions (characteristic roots) can
yield an explicit formula for the sequence.
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Solving 2-LiHoReCoCos

» Consider an arbitrary 2-LiHoReCoCo:
a,=ca, | T06a,,
* It has the characteristic equation (C.E.):

2 — . =
r-—cr—c,=0

* Thm. 1: If this CE has 2 roots r, #r,, then
a, = o,r" + a,r," for n=0
for some constants a,, a,.
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* Solve the recurrence a, = a
initial conditions a, = 2, a,

T 2a,_, given the
7.

n_

e Solution:
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Example Continued...

* To find a, and a,, solve the equations for the 1nitial
conditions g, and a;:

Simplifying, we have the pair of equations:

which we can solve easily by substitution:

 Final answer:

Check: {a,.} =2,7,11,25,47,97 ...
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Example

* Find an explicit formula for the Fibonacci
numbers.
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The Case of Degenerate Roots

« Now, what if the C.E. > — ¢;r — ¢, = 0 has
only 1 root r,?

 Theorem 2: Then,
a, = o,r," + a,nr,", for all n=>0,

for some constants a,, a,.
e Ex:a,=6a,_,-9a ,, a,=1, a, =6
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k-1.L1IHoReCoCos

 Consider a k-LiHoReCoCo:
 [t’s C.E. 1s: k

rt —Zcir’” =0

=1
« Thm.3: If this has £ distinct roots 7, then the
solutions to the recurrence are of the form:

k
. n
an T : :glrl
=1

for all n>0, where the a. are constants.
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Example

- Exta,=6a,,—-11a, _,+6a, _,,

a,=2,a =5a,=15
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Degenerate k-L1iHoReCoCos

* Suppose there are ¢ roots r,...,r, with
multiplicities m,...,m,. Then:

t m;—1
— J |57
0= Sanl:
1\ j=0

I=

for all n>0, where all the a are constants.

(¢)2001-2003, Michael P. Frank § 7.2 — Solving Recurrences 71



(¢)2001-2003, Michael P. Frank § 7.2 — Solving Recurrences 2



LiNoReCoCos

* Linear nonhomogeneous RRs with constant
coefficients may (unlike LiIHOReCoCos)
contain some terms F(n) that depend only
on n (and not on any a.’s). General form:

a,=ca, +...+tca,,+Fn)

n—1 .
\ /
e

The associated homogeneous recurrence relation
(associated LiHoReCoCo).
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Solutions of LiINoReCoCos

e A useful theorem about LiNoReCoCos:

— If a, = p(n) 1s any particular so’ lution to the

(ch a_. |+ F(n)

LiNoReCoCo

— Then all 1ts solutions are of the form:

a, = p(n) + h(n),
where a, = h(n) 1s any solution to the
ass001ated homogeneous RR 4 = ZC a j
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* Find all solutions to a, = 3a, ,+2n. Which
solution has a, = 3?

— Notice this 1s a 1-LiNoReCoCo. Its associated
1-LiHoReCoCo 1s a, = 3a,_;, whose solutions

n—1»

are all of the form a, = a3". Thus the solutions
to the original problem are all of the form a, =
p(n) + a3". So, all we need to do 1s find one
p(n) that works.
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Trial Solutions

e If the extra terms F(n) are a degree-¢ polynomial
in n, you should try a degree-¢ polynomial as the
particular solution p(n).

* This case: F(n) 1s linear so try a, = cn + d.

(for all n)

(collect terms)

So
So 1S a solution.
* Check: a,., =1-5/2,-7/2,-9/2, ... }
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Finding a Desired Solution

* From the previous, we know that all general
solutions to our example are of the form:

Solve this for a for the given case, a, = 3.

e The answer 1s
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Main points so far:

* Many types of problems are solvable by
reducing a problem of size »n into some

number a of independent subproblems,
each of size Srn/b_‘, where a>1 and b6>1.

* The time complexity to solve such
problems 1s given by a recurrence relation:

— T(n)=a T( n/b )+ g(n)
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Divide+Conquer Examples

« Binary search: Break list into 1 sub-

problem (smaller list) (so a=1) of size
< ni21(so b=2).
—So T(n)=T( n/2 )+¢ (g(n)=c constant)

Merge sort: Break list of length » into 2
sublists (a=2), each of size <[ n/2 | (so b=2),
then merge them, 1n g(n) = O(n) time.

—So T(n)=2T( n/2 1) + en (roughly, for some ¢)
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Divide+Conquer Examples

* Finding the Maximum and Minimum:
Break list into 2 sub-problem (smaller list)

(so a=2) of size < n/2 | (so b=2).
—So T(n) =2T( nl2)+2 (g(n)=2 constant)

(¢)2001-2003, Michael P. Frank § 7.3 — D-C Recurrence Relations 31



Fast Multiplication Example

The ordinary grade-school algorithm takes ®(#n?) steps to
multiply two n-digit numbers.

— This seems like too much work!

So, let’s find an asymptotically faster multiplication
algorithm!

To find the product c¢d of two 2n-digit base-b numbers,
c=(Cop-1Con2-+-Co)p ANA - @=(dy, 15,5 . .dp)y,

First, we break ¢ and d 1n half:

c=b"C\+C,, d=b"D+D,, and then... (see next slide)
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Derivation of Fast Multiplication

cd =(b"C, +C,)(b"D, + D,)

. . Multiply out
=b""C,D, +b"(C,D,+C,D,)+C,D, (Multiply

polynomials)

=b*"C,D, +C,D, + Zero

b (C,D, +C,D, CDs ~CyDD)

=(b>" +b")C,D, +(b" +1)C,D, +
b"(C,D,-C,D,-C,D,+C,D,)

= (> +b"CD, +(b" +1)C,D, +
b"(C,—C,)(D,—D,)  (Factor last polynomial)
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Recurrence Rel. for Fast Mult.

Notice that the time complexity 7(n) of the
fast multiplication algorithm obeys the

recurrence. Time to do the needed adds &

. T(2n)=3 T(n) subtracts of n-digit and 2n-digit

. numbers
i.e.,

e T(n)=31(n/2)+O(n)
So a=3, b=2.
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The Master Theorem

Consider a function f{n) that, for all n=b* for
all ke Z", satisfies the recurrence relation:

f(n) = a f(n/b) + cn?
with a>1, integer b>1, real ¢>0, d>0. Then:

On!) if @ < b’
f(n)e<1O(n’log, n) if a=>b"
O(n" ") if a > b*
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Consider a function f{n) that, for all n=2* for
all ke Z", satisfies the recurrence relation:

f(n) =5f(n/2) + 3. Then: f(n)=

Complexity of Merge Sort:

Mn)y=2M(n/2)+n
S M(n)=
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» Recall that complexity of fast multiply was:
T(n)=31T(n/2)+0O(n)
e Thus, a=3, b=2, d=1. So a > b4, so case 3
of the master theorem applies, so:

T'(n)=

which is ®(n!>3-), so the new algorithm is
strictly faster than ordinary ®(n?) multiply!
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« The Closest-Pair Problem:a set of n
pOIHtS, (X11 y1)1”"(xn1 yn)

d(i, ) = (% = %) +(y, - y;)’

 How can this closest pair of points be found

in an efficient way?
T(n)=2T(n/2)+7n
I'(n)=
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37.4: Generating Functions

 Definition:generating function for the
sequence a,,a,,---,a,,--- of real numbers 1s the
infinite series

G(X)=a,+a,X+a,X" +---+a, X +---= > a x"
k=0
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 What is the generating function of the
sequence 1,1,1,1,1,1?

G(x) =
 What is the generating function of the

sequence{a,}, 8 =C(m,k) ?
G(x) =
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» The function f(x)=1/(1—x) 1s the generating
function of the sequence 1,1,1,...for |x|<I.

» The function f(x)=1/(1—ax) 1s the generating
function of the sequence 1,a,a?,...for
lax|<1.
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Let f(x)=>) ax" g(x)=> bx*, then
k=0 k=0

F(x)+9(x) =Y (@, +b)x*, and

o0

f(x)g(x):Z[Zajb“]xk

Convolution of a, and b,
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What sequence has the generating function

fx)=1/(1—x)* ?

(€)2001-2003, Michael P. Frank § 7.4 — Generating Functions 13



Extended Binomial Coefticient

(uj_{u(u—l)---(u—k+1)/k!, if k>0
=

u :
Examples: Note: u positive integer,(kj =0 1fk>u

1, ifk=0
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Extended Binomial Theorem

(ijk, where |x| <1

k=0

Can be proved using Maclaurin series.

Examples:

(1+X)™" = Z[_k”jxk = i(—l)kC(n +k—1,k)x"

k=0

(1-x)" =Y C(n+k-1,k)x"
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Example

Find the number of solutions of

e +e,+e, =17, where e,,e,,and e, are nonnegative
integers with 2<e <5, 3<e¢,<6, 4<e, <.

Sol: Find the coefficient of X7,

The answer 1s
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Solve the recurrence relation:
a, =3a, , fork=12,3,---anda, = 2.

Sol: Let G(x) be the generating function of

{a,} , G(x) :kii;akxk
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Example(Cont’d)
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