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Chap. 7

§7.1: Recurrence Relations

•• A A recurrence relationrecurrence relation (R.R., or just (R.R., or just recurrencerecurrence) ) 
for a sequence {for a sequence {aann} is an equation that expresses } is an equation that expresses 
aann in terms of one or more previous elements in terms of one or more previous elements 
aa00, , ……, , aann−−11 of the sequence, for all of the sequence, for all nn≥≥nn00..
–– A recursive definition, without the base cases.A recursive definition, without the base cases.

•• A particular sequence (described nonA particular sequence (described non--recursively) recursively) 
is said to is said to solvesolve the given recurrence relation if it is the given recurrence relation if it is 
consistent with the definition of the recurrence.consistent with the definition of the recurrence.
–– A given recurrence relation may have many solutionsA given recurrence relation may have many solutions..

§ 7.1 – Recurrence Relations
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Recurrence Relation Example

•• Consider the recurrence relationConsider the recurrence relation
aann = 2= 2aann−−11 −− aann−−22 ((nn≥≥2).2).

•• Which of the following are solutions?Which of the following are solutions?
aann = 3= 3nn
aann = 2= 2nn

aann = 5= 5

§ 7.1 – Recurrence Relations
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Example Applications

•• Recurrence relation for growth of a bank Recurrence relation for growth of a bank 
account with account with PP% interest per given period:% interest per given period:

MMnn = = MMnn−−11 + (+ (PP/100)/100)MMnn−−11

•• Growth of a population in which each Growth of a population in which each 
organism yields 1 new one every period organism yields 1 new one every period 
starting 2 periods after its birth.starting 2 periods after its birth.

PPnn = = PPnn−−11 + + PPnn−−22 (Fibonacci relation)(Fibonacci relation)

§ 7.1 – Recurrence Relations
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Solving Compound Interest RR

•• MMnn = = MMnn−−11 + (+ (PP/100)/100)MMnn−−11

= (1 + = (1 + PP/100) /100) MMnn−−11

= = rr MMnn−−11 (let (let rr = = 1 + 1 + PP/100)/100)

§ 7.1 – Recurrence Relations
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Tower of Hanoi Example

•• Problem: Get all disks from peg 1 to peg 2.Problem: Get all disks from peg 1 to peg 2.
–– Only move 1 disk at a time.Only move 1 disk at a time.
–– Never set a larger disk on a smaller one.Never set a larger disk on a smaller one.

Peg #1 Peg #2 Peg #3

§ 7.1 – Recurrence Relations
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Hanoi Recurrence Relation

•• Let Let HHnn = # moves for a stack of = # moves for a stack of nn disks.disks.
•• Optimal strategy:Optimal strategy:

–– Move top Move top nn−−1 disks to spare peg. (1 disks to spare peg. (HHnn−−11 moves)moves)
–– Move bottom disk. (1 move)Move bottom disk. (1 move)
–– Move top Move top nn−−1 to bottom disk. (1 to bottom disk. (HHnn−−11 moves)moves)

•• Note:      Note:      HHnn = 2= 2HHnn−−11 + 1+ 1

§ 7.1 – Recurrence Relations
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Solving Tower of Hanoi RR

HHnn = 2 = 2 HHnn−−11 + 1+ 1

§ 7.1 – Recurrence Relations
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Finding Recurrence Relation

Ex: Ex: Find a recurrence relation and give initial Find a recurrence relation and give initial 
conditions for the number of bit strings of length conditions for the number of bit strings of length 
nn that do not have two consecutive 0s. How many that do not have two consecutive 0s. How many 
such bit strings are there of length 5? such bit strings are there of length 5? 

§ 7.1 – Recurrence Relations



(c)2001-2003, Michael P. Frank 10

Chap. 7

Codeword Enumeration

ExEx::Consider a string of decimal digits a valid Consider a string of decimal digits a valid 
codeword if it contains codeword if it contains an even number of 0an even number of 0
digits. For example, 123digits. For example, 1230044007869 is valid, whereas 7869 is valid, whereas 
12120098798700456456008 is not valid. Let 8 is not valid. Let aan be the number be the number 
of valid of valid nn--digit digit codewordscodewords. Find a recurrence . Find a recurrence 
relation for relation for aan ..

§ 7.1 – Recurrence Relations
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Catalan Numbers

ExEx:: Find a recurrence relation for Find a recurrence relation for CCn , the number of , the number of 
ways to parenthesize the product of ways to parenthesize the product of nn+1 numbers, +1 numbers, 
xx0, , xx1,,……, , xxn, to specify the order of multiplication. , to specify the order of multiplication. 
For example, For example, CC3 = 5.= 5.

§ 7.1 – Recurrence Relations
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§7.2: Solving Recurrences

•• A A lilinear near hohomogeneous mogeneous rerecurrence of currence of 
degree degree kk with with coconstant nstant cocoefficientsefficients ((““kk--
LiHoReCoCoLiHoReCoCo””) is a recurrence of the form) is a recurrence of the form

aann = = cc11aann−−11 + + …… + + cckkaann−−kk,,
where the where the ccii are all real, and are all real, and cckk ≠≠ 0.0.

•• The solution is The solution is uniquelyuniquely determined determined if if kk
initial conditions initial conditions aa00……aakk−−11 are providedare provided..

General Solution Schemas

§ 7.2 – Solving Recurrences



(c)2001-2003, Michael P. Frank 13

Chap. 7

Solving LiHoReCoCos

•• Basic idea: Look for solutions of the form Basic idea: Look for solutions of the form 
aann = = rrnn, where , where rr is a constant.is a constant.

•• This requires the This requires the characteristic equationcharacteristic equation::
rrnn = = cc11rrnn−−11 + + …… + + cckkrrnn−−kk, , i.e.i.e., , 
rrkk −− cc11rrkk−−11 −− …… −− cckk = 0= 0

•• The solutions (The solutions (characteristic rootscharacteristic roots) can ) can 
yield an explicit formula for the sequence.yield an explicit formula for the sequence.

§ 7.2 – Solving Recurrences
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Solving 2-LiHoReCoCos

•• Consider an arbitrary 2Consider an arbitrary 2--LiHoReCoCo:LiHoReCoCo:
aann = = cc11aann−−11 + + cc22aann−−22

•• It has the characteristic equation (C.E.): It has the characteristic equation (C.E.): 
rr22 −− cc11r r −− cc22 = 0= 0

•• ThmThm. 1:. 1: If this CE has 2 roots If this CE has 2 roots rr11≠≠rr22, then, then
aann = = αα11rr11

nn + + αα22rr22
nn for for nn≥≥00

for some constants for some constants αα11, , αα22..

§ 7.2 – Solving Recurrences
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Example

•• Solve the recurrence Solve the recurrence aann = = aann−−11 + 2+ 2aann−−22 given the given the 
initial conditions initial conditions aa00 = 2, = 2, aa11 = 7.= 7.

•• Solution:Solution:

§ 7.2 – Solving Recurrences
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Example Continued…

•• To find To find αα11 and and αα22, solve the equations for the initial , solve the equations for the initial 
conditions conditions aa00 and and aa11: : 

Simplifying, we have the pair of equations:Simplifying, we have the pair of equations:

which we can solve easily by substitution:which we can solve easily by substitution:

•• Final answer:Final answer:

Check: {an≥0} = 2, 7, 11, 25, 47, 97 …
§ 7.2 – Solving Recurrences
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Example

•• Find an explicit formula for the Fibonacci Find an explicit formula for the Fibonacci 
numbers.numbers.

§ 7.2 – Solving Recurrences
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The Case of Degenerate Roots

•• Now, what if the C.E. Now, what if the C.E. rr22 −− cc11r r −− cc22 = 0 has = 0 has 
only 1 root only 1 root rr00??

•• Theorem 2:Theorem 2: Then,Then,
aann = = αα11rr00

nn + + αα22nrnr00
nn,  for all ,  for all nn≥≥0,0,

for some constants for some constants αα11, , αα22..
•• Ex:Ex: 6196 1021   aaaaa nnn   ,  ,

§ 7.2 – Solving Recurrences
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k-LiHoReCoCos

•• Consider a Consider a kk--LiHoReCoCoLiHoReCoCo::
•• ItIt’’s C.E. is:s C.E. is:

•• Thm.3:Thm.3: If this has If this has kk distinct roots distinct roots rrii, , then the then the 
solutions to the recurrence are of the form:solutions to the recurrence are of the form:

for all for all nn≥≥0, where the 0, where the ααii are constants.are constants.
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Example

•• Ex:Ex:
1552

6116
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Degenerate k-LiHoReCoCos

•• Suppose there are Suppose there are tt roots roots rr11,,……,,rrtt with with 
multiplicities multiplicities mm11,,……,,mmtt.  Then:.  Then:

for all for all nn≥≥0, where all the 0, where all the αα are constants.are constants.
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Example

•• Ex:Ex:
121

33
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LiNoReCoCos

•• Linear Linear nononhomogeneousnhomogeneous RRsRRs with constant with constant 
coefficients may (unlike coefficients may (unlike LiLiHoHoReCoCosReCoCos) ) 
contain some terms contain some terms FF((nn) that depend ) that depend onlyonly
on on nn (and (and notnot on any on any aaii’’ss).  General form:).  General form:

aann = = cc11aann−−11 + + …… + + cckkaann−−kk + + FF((nn))

The associated homogeneous recurrence relation
(associated LiHoReCoCo).

§ 7.2 – Solving Recurrences
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Solutions of LiNoReCoCos

•• A useful theorem about A useful theorem about LiNoReCoCosLiNoReCoCos::
–– If If aann = = pp((nn) is any ) is any particularparticular solution to the solution to the 

LiNoReCoCoLiNoReCoCo

–– Then Then allall its solutions are of the form:its solutions are of the form:
aann = = pp((nn) + ) + hh((nn)),,

where where aann = = hh((nn) is any solution to the ) is any solution to the 
associated homogeneous RRassociated homogeneous RR
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Example

•• Find all solutions to Find all solutions to aann = 3= 3aann−−11+2+2nn.  Which .  Which 
solution has solution has aa11 = 3?= 3?
–– Notice this is a 1Notice this is a 1--LiLiNoNoReCoCo.  Its associated ReCoCo.  Its associated 

11--LiLiHoHoReCoCo is ReCoCo is aann = 3= 3aann−−11, whose solutions , whose solutions 
are all of the form are all of the form aann = = αα33nn.  Thus the solutions .  Thus the solutions 
to the original problem are all of the form to the original problem are all of the form aann = = 
pp((nn) + ) + αα33nn.. So, all we need to do is find one So, all we need to do is find one 
pp((nn) that works.) that works.

§ 7.2 – Solving Recurrences
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Trial Solutions

•• If the extra terms If the extra terms FF((nn) are a degree) are a degree--tt polynomial polynomial 
in in nn, , you should try a degreeyou should try a degree--tt polynomial as the polynomial as the 
particular solution particular solution pp((nn))..

•• This case: This case: FF((nn) is linear so try ) is linear so try aann = = cncn + + dd..
(for all (for all nn))
(collect terms)(collect terms)

So So 
So So is a solution.is a solution.

•• Check:  Check:  aann≥≥11 = {= {−−5/2, 5/2, −−7/2, 7/2, −−9/2, 9/2, …… }}

§ 7.2 – Solving Recurrences
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Finding a Desired Solution

•• From the previous, we know that all general From the previous, we know that all general 
solutions to our example are of the form:solutions to our example are of the form:

Solve this for Solve this for αα for the given case, for the given case, aa11 = 3:= 3:

•• The answer isThe answer is

§ 7.2 – Solving Recurrences
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Example

Ex: n
nnn aaa 765 21  

§ 7.2 – Solving Recurrences
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§7.3: Divide & Conquer R.R.s

Main points so far:Main points so far:
•• Many types of problems are solvable by Many types of problems are solvable by 

reducing a problem of size reducing a problem of size nn into some into some 
number number aa of independent of independent subproblemssubproblems, , 
each of size each of size nn//bb, where , where aa1 and 1 and bb>1.>1.

•• The time complexity to solve such The time complexity to solve such 
problems is given by a recurrence relation:problems is given by a recurrence relation:
–– TT((nn) = ) = aa··TT((nn//bb) + ) + gg((nn))

§ 7.3 – D-C Recurrence Relations
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Divide+Conquer Examples

•• Binary search:Binary search: Break list into 1 subBreak list into 1 sub--
problem (smaller list) (so problem (smaller list) (so aa=1) of size =1) of size 
nn/2/2 (so (so bb=2).=2).
–– So So TT((nn) = ) = TT((nn/2/2)+)+cc ((gg((nn)=)=cc constant)constant)

•• Merge sort:Merge sort: Break list of length Break list of length n n into 2 into 2 
sublistssublists ((aa=2), each of size =2), each of size nn/2/2 (so (so bb=2), =2), 
then merge them, in then merge them, in gg((nn) = ) = ΘΘ((nn) time.) time.
–– So So TT((nn) = 2) = 2TT((nn/2/2) + ) + cncn (roughly, for some (roughly, for some cc))

§ 7.3 – D-C Recurrence Relations
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Divide+Conquer Examples

•• Finding the Maximum and Minimum:Finding the Maximum and Minimum:
Break list into 2 subBreak list into 2 sub--problem (smaller list) problem (smaller list) 
(so (so aa=2) of size =2) of size nn/2/2 (so (so bb=2).=2).
–– So So TT((nn) = 2) = 2TT((nn/2/2)+2    ()+2    (gg((nn)=2 constant))=2 constant)

§ 7.3 – D-C Recurrence Relations
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Fast Multiplication Example

•• The ordinary gradeThe ordinary grade--school algorithm takes school algorithm takes ΘΘ((nn22) steps to ) steps to 
multiply two multiply two nn--digit numbersdigit numbers..
–– This seems like too much work!This seems like too much work!

•• So, letSo, let’’s find an asymptotically s find an asymptotically faster faster multiplication multiplication 
algorithm!algorithm!

•• To find the product To find the product cdcd of two of two 22nn--digit basedigit base--bb numbers, numbers, 
cc=(=(cc22nn--11cc22nn--22……cc00))bb and   and   dd=(=(dd22nn--11dd22nn--22……dd00))bb, , 

First, we break First, we break cc and and dd in half:in half:

cc==bbnnCC11++CC00,      ,      dd==bbnnDD11++DD00,    and then... (see next slide),    and then... (see next slide)

§ 7.3 – D-C Recurrence Relations
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Derivation of Fast Multiplication

Zero

(Multiply out
polynomials)

(Factor last polynomial)
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Recurrence Rel. for Fast Mult.

Notice that the time complexity Notice that the time complexity TT((nn) of the ) of the 
fast multiplication algorithm obeys the fast multiplication algorithm obeys the 
recurrence:recurrence:

•• TT(2(2nn)=3)=3TT((nn)+)+((nn))
i.e.i.e.,,

•• TT((nn)=3)=3TT((nn/2)+/2)+((nn))
So So aa=3, =3, bb=2.=2.

Time to do the needed adds & 
subtracts of n-digit and 2n-digit
numbers

§ 7.3 – D-C Recurrence Relations
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The Master Theorem

Consider a function Consider a function ff((nn) that, for all ) that, for all nn==bbkk for for 
all all kkZZ++,,,,satisfies the recurrence relation:satisfies the recurrence relation:

ff((nn) = ) = a f a f ((nn//bb) + ) + cncndd

with with aa≥≥1, integer 1, integer bb>1>1, real , real cc>0, >0, dd≥≥0.  Then:0.  Then:
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Examples

Consider a function Consider a function ff((nn) that, for all ) that, for all nn=2=2kk for for 
all all kkZZ++,,,,satisfies the recurrence relation:satisfies the recurrence relation:

ff((nn) = 5) = 5ff((nn/2) + 3/2) + 3.  Then:.  Then:

Complexity of Merge Sort:Complexity of Merge Sort:
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Example

•• Recall that complexity of fast multiply was:Recall that complexity of fast multiply was:
TT((nn)=3)=3TT((nn/2)+/2)+((nn))

•• Thus, Thus, aa=3, =3, bb=2, =2, dd=1.  So =1.  So aa > > bbdd, so case 3 , so case 3 
of the master theorem applies, so:of the master theorem applies, so:

which is which is ((nn1.581.58……), so the new algorithm is ), so the new algorithm is 
strictly faster than ordinary strictly faster than ordinary ΘΘ((nn22) multiply!) multiply!

)(nT
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Example

•• The ClosestThe Closest--Pair Problem:Pair Problem:a set of a set of nn
points,points,

•• How can this closest pair of points be found How can this closest pair of points be found 
in an efficient way? in an efficient way? 

TT((nn)=2)=2TT((nn/2)+7/2)+7nn
)(nT

),(,),,( nn yxyx 11

22 )()(),( jiji yyxxjid 
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§7.4: Generating Functions

•• Definition:Definition:generating function for the generating function for the 
sequence                     of real numbers is the sequence                     of real numbers is the 
infinite series infinite series 
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Examples

•• What is the generating function of the What is the generating function of the 
sequence 1,1,1,1,1,1? sequence 1,1,1,1,1,1? 

•• What is the generating function of the What is the generating function of the 
sequence                       ?sequence                       ?

)(xG
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Examples

•• The function The function ff((xx)=1/(1)=1/(1xx) is the generating ) is the generating 
function of the sequence 1,1,1,function of the sequence 1,1,1,……for |for |xx|<1.|<1.

•• The function The function ff((xx)=1/(1)=1/(1axax) is the generating ) is the generating 
function of the sequence 1,function of the sequence 1,aa,,aa22,,……for for 
||axax|<1.|<1.

§ 7.4 – Generating Functions
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Theorem
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Example

What sequence has the generating functionWhat sequence has the generating function
ff((xx)=1/(1)=1/(1xx))22 ??
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Extended Binomial Coefficient

Examples:Examples:
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Extended Binomial Theorem

Can be proved using Can be proved using MaclaurinMaclaurin series.series.
Examples:Examples:
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Example

Find the number of solutions ofFind the number of solutions of

Sol: Sol: Find the coefficient of Find the coefficient of xx1717 ,,

The answer isThe answer is

.74  ,63  ,52 with  integers
 enonnegativ are  and,,    where,17

321

321321
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Example

Solve the recurrence relation:Solve the recurrence relation:

Sol: Sol: Let Let GG((xx) be the generating function of    ) be the generating function of    
{{aak}} , , 

.2 and ,3 ,2 ,1for    3 01   akaa kk 
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Example(Cont’d)
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