Chap. 7

Chapter 7: Advanced Counting Techniques

(c)2001-2003, Michael P. Frank 1

§7.1: Recurrence Relations

•• A *recurrence relation* (R.R., or just *recurrence*) for a sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more previous elements a_0, \ldots, a_{n-1} of the sequence, for all $n \ge n_0$.

A recursive definition, without the base cases. A recursive definition, without the base cases.

• A particular sequence (described non-recursively) is said to *solve* the given recurrence relation if it is consistent with the definition of the recurrence.

- A given recurrence relation may have many solutions.

Recurrence Relation Example

- Consider the recurrence relation $a_n = 2a_{n-1} -a_{n-2}$ (*n*≥2).
- Which of the following are solutions? $a_n = 3n$ $a_n = 2^n$ $a_n = 5$

Example Applications

- Recurrence relation for growth of a bank account with *P*% interest per given period: $M_n = M_{n-1} + (P/100)M_{n-1}$
- •Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.

 $P_n = P_{n-1} + P_{n-2}$ (Fibonacci relation)

Solving Compound Interest RR

•
$$
M_n = M_{n-1} + (P/100)M_{n-1}
$$

= $(1 + P/100)M_{n-1}$
= $r M_{n-1}$ (let $r = 1 + P/100$)

Hanoi Recurrence Relation

- Let H_n = # moves for a stack of *n* disks.
- •Optimal strategy:
	- − Move top *n*−1 disks to spare peg. (H_{n-1} moves)
	- Move bottom disk. (1 move)
	- − Move top *n*−1 to bottom disk. (H_{n-1} moves)

• Note:
$$
H_n = 2H_{n-1} + 1
$$

Chap. 7

by Mingfu LI, CGUEE

Solving Tower of Hanoi RR

 $H_n = 2 H_n$ $_{-1} + 1$

Finding Recurrence Relation

Ex: Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that do not have two consecutive 0s. How many such bit strings are there of length 5?

Codeword Enumeration

Ex: Consider a string of decimal digits a valid codeword if it contains an even number of 0 digits. For example, 1230407869 is valid, whereas 120987045608 is not valid. Let a_n be the number of valid *n*-digit codewords. Find a recurrence relation for $a_n^{}$.

Catalan Numbers

Ex: Find a recurrence relation for C_n , the number of ways to parenthesize the product of $n+1$ numbers, x_0, x_1, \ldots, x_n , to specify the order of multiplication. For example, $C_3 = 5$.

Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.
- This requires the *characteristic equation*: $r^n = c_1 r^{n-1}$ $-1 + \ldots + c_k r^n$ *k* , *i.e.*, *rk* $-c_1 r^{k-1} -$ … − $-c_k = 0$
- The solutions (*characteristic roots*) can yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

- Consider an arbitrary 2-LiHoReCoCo: $a_n = c_1 a_{n-1} + c_2 a_{n-2}$
- It has the characteristic equation $(C.E.)$: *r*2 −− c_1r − $-c_2 = 0$
- Thm. 1: If this CE has 2 roots r_1 $\neq r_2$, then $a_n = a_1 r_1$ $n + a_2 r_2$ ⁿ for $n \ge 0$ for some constants $\alpha_1, \alpha_2.$

The Case of Degenerate Roots

- Now, what if the C.E. r^2 −− c_1r − $-c_2 = 0$ has only 1 root $\overline{}$ r_0 ?
- •**Theorem 2: Theorem 2:** Then,

 $a_n = a_1 r_0$ $n + α_2 n r_0$ *n*, for all *n*≥0,

for some constants $\alpha_1, \, \alpha_2.$

• **E**
$$
\times
$$
: $a_n = 6a_{n-1} - 9a_{n-2}$, $a_0 = 1$, $a_1 = 6$

(c)2001-2003, Michael P. Frank
$$
\S 7.2 - Solving Recurrences
$$
 18

Degenerate *k*-LiHoReCoCos

•• Suppose there are *t* roots r_1, \ldots, r_t with $multiplicities m_1, \ldots, m_t . Then:$

$$
a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n
$$

for all $n \geq 0,$ where all the α are constants.

$$
\begin{array}{ll}\n\text{Discrete Mathemality} & \text{Chap. 7} & \text{by Mingfu LI. CGUEE} \\
\hline\n\text{Example} & \text{Ex: } a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}, \\
a_0 = 1, a_1 = -2, a_2 = -1\n\end{array}
$$

GD>

 \int

Ξ

i

1

Solutions of LiNoReCoCos

- A useful theorem about LiNoReCoCos:
	- $-$ If $a_n = p(n)$ is any *particular* solution to the LiNoReCoCo
 $a_n = \left(\sum_{i=1}^{k} c_i a_{n-i} \right) + F(n)$ $a_n = | \sum c_i a_{n-i} | + F(n)$ *k* $n = \frac{1}{2} \sum_{i} c_i a_{n-i} +$ \int $\left(\sum_{i=1}^{k} a_{n} \right)^{n}$ \setminus $\Big($ \equiv $\sum_{i=1}$ Ξ
	- Then *all* its solutions are of the form: 1 *i*

 $a_n = p(n) + h(n)$,

where $a_n = h(n)$ is any solution to the associated homogeneous RR $a_n = \left(\sum c_i a_{n-i} \right)$ $\left(\sum_{i=1}^{k} a_{n-i}\right)$ \setminus $\sqrt{2}$ Ξ $\sum_{i=1}$ *k* $a_n = \sum_i c_i a_{n-i}$

(c)2001-2003, Michael P. Frank \S 7.2 – Solving Recurrences 26

§7.3: Divide & Conquer R.R.s

Main points so far:

- Many types of problems are solvable by reducing a problem of size *n* into some number *a* of independent subproblems, each of size $\leq n/b$, where $a \geq 1$ and $b > 1$.
- The time complexity to solve such problems is given by a recurrence relation: $-T(n) = a \cdot T(\lceil n/b \rceil) + g(n)$

Divide+Conquer Examples

- **Binary search:** Break list into 1 sub problem (smaller list) (so $a=1$) of size $\leq n/2 \rceil$ (so $b=2$). *n*/2 (so *b*=2).
	- $-$ So $T(n) = T(\lceil n/2 \rceil) + c$ (*g*(*n*)=*c* constant)
- **Merge sort:** Break list of length *n* into 2 sublists (*a*=2), each of size $\leq n/2$ (so *b*=2), then merge them, in $g(n) = \Theta(n)$ time.
	- $-$ So $T(n) = 2T(\lceil n/2 \rceil) + cn$ (roughly, for some *c*)

Divide+Conquer Examples

• **Finding the Maximum and Minimum: Finding the Maximum and Minimum:** Break list into 2 sub-problem (smaller list) $(\text{so } a=2) \text{ of size } \leq n/2 \rceil (\text{so } b=2).$ $-$ So $T(n) = 2T(\lceil n/2 \rceil) + 2$ (*g*(*n*)=2 constant)

Fast Multiplication Example

- •• The ordinary grade-school algorithm takes $\Theta(n^2)$ steps to multiply two *n*-digit numbers.
	- This seems like too much work!
- •So, let's find an asymptotically *faster* multiplication algorithm! algorithm!
- •• To find the product *cd* of two 2*n*-digit base -*b* numbers, $c = (c_{2n-1}c_{2n-2}...c_0)_b$ and $d = (d_{2n-1}d_{2n-2}...d_0)_b$,

First, we break *c* and *d* in half:

 c = b *n* $C_1 + C_0$, $d = b^n D_1 + D_0$, and then... (see next slide)

Derivation of Fast Multiplication

 $b^{n}(C_1 - C_0)(D_0 - D_1)$ $(b^{2n}+b^n)C_1D_1+(b^n+1)C_0D_0$ $b^{n}(C_{1}D_{0}-C_{1}D_{1}-C_{0}D_{0}+C_{0}D_{1})$ $(b^{2n}+b^n)C_1D_1+(b^n+1)C_0D_0$ $b^{n}(C_{1}D_{0} + C_{0}D_{1} + C_{1}D_{1} - C_{1}D_{1}) + C_{0}D_{0} - C_{0}D_{0}$ $C_1D_1 + b^n(C_1D_0 + C_0D_1) + C_0D_0$ $cd = (bⁿC₁ + C₀)(bⁿD₁ + D₀)$ $b^{2n} + b^n$) $C_1D_1 + (b^n + 1)C_0D_1$ $b^{2n} + b^n$) $C_1D_1 + (b^n + 1)C_0D_1$ $1\mathcal{L}_1$ \sim 0 \mathcal{L}_0 $b^{2n}C_1D_1 + C_0D$ $b^{2n}C_1D_1 + b^n(C_1D_0 + C_0D_1) + C_0D_0$ $\binom{n}{1}$ C_1 C_0 $(D_0$ $-D_1)$ (Factor last polynomial) $= (b^{2n} + b^n)C_1D_1 + (b^n + 1)C_0D_0 +$ $^{n}(C_{1}D_{0}-C_{1}D_{1}-C_{0}D_{0}+$ $= (b^{2n} + b^n)C_1D_1 + (b^n + 1)C_0D_0 +$ $^{n}(C_{1}D_{0}+C_{0}D_{1}+CC_{1}D_{1}-C_{1}D_{1})+CC_{0}D_{0}-C_{1}D_{1}$ $= b^{2n}C_1D_1 + C_0D_0 +$ $= b^{2n}C_1D_1 + b^n(C_1D_0 + C_0D_1) +$ $=(b^nC_1+C_0)(b^nD_1+$ Zero(Multiply out polynomials)

(c)2001-2003, Michael P. Frank \S 7.3 – D-C Recurrence Relations 33

Recurrence Rel. for Fast Mult.

Notice that the time complexity $T(n)$ of the fast multiplication algorithm obeys the recurrence: Time to do the needed adds &

numbers

- •*T*(2 *ⁿ*)=3 *T*(*ⁿ*)+ (*n*) *i.e.* ,
- •*T*(*ⁿ*)=3 *T*(*ⁿ*/2)+ (*n*) So *^a*=3, *b*=2.

(c)2001-2003, Michael P. Frank \S 7.3 – D-C Recurrence Relations 34

subtracts of *ⁿ*-digit and 2 *ⁿ*-digit

The Master Theorem

Consider a function $f\!(n)$ that, for all n = *b k* for all *k* **Z** $^+$, satisfies the recurrence relation: $f(n) = af(n/b) + cn^d$ with $a \ge 1$, integer $b > 1$, real $c > 0$, $d \ge 0$. Then: $\overline{\mathcal{L}}$ $\bigg\{$ \int $\Theta(n^{\log_b a})$ if $a >$ $\Theta(n^d \log_k n)$ if $a =$ $\Theta(n^a)$ if $a <$ \in $a \rightarrow \mathbf{r}$ *d b n*) if $a = b^d$ *d* $d \searrow$ $\mathcal{L} \circ \mathcal{L}$ $n^{\log_b a}$ if $a > b$ n^a $\log_b n$ if $a = b$ n^a) if $a < b$ *f n b* $(n^{\log_b a})$ if $(n^d \log_h n)$ if (n^d) if (n) log

(c)2001-2003, Michael P. Frank \S 7.3 – D-C Recurrence Relations 35

(c)2001-2003, Michael P. Frank \S 7.3 – D-C Recurrence Relations 36

by Mingfu LI, CGUEE

Theorem

Let
$$
f(x) = \sum_{k=0}^{\infty} a_k x^k
$$
, $g(x) = \sum_{k=0}^{\infty} b_k x^k$, then
\n
$$
f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k
$$
, and
\n
$$
f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j} \right) x^k
$$

\n**Convolution of** a_k **and** b_k

Extended Binomial Coefficient

Extended Binomial Theorem

$$
(1+\mathbf{x})^u = \sum_{k=0}^{\infty} \binom{u}{k} x^k, \quad \text{where } |x| < 1
$$

Can be proved using Maclaurin series.

Examples:
\n
$$
(1+x)^{-n} = \sum_{k=0}^{\infty} {\binom{-n}{k}} x^k = \sum_{k=0}^{\infty} (-1)^k C(n+k-1,k) x^k
$$
\n
$$
(1-x)^{-n} = \sum_{k=0}^{\infty} C(n+k-1,k) x^k
$$

(c)2001-2003, Michael P. Frank \S 7.4 – Generating Functions 45

