Chapter 4.

Induction and Recursion

(¢)2001-2003, Michael P. Frank 1

34.1: Mathematical Induction

* A powerful, rigorous technique for proving
that a predicate P(n) 1s true for every
positive integer n, no matter how large.

» Essentially a “domino effect” principle.

» Based on a predicate-logic inference rule:
P(1)
YVk>1 (P(k)_)P(k-|—1)) “The First Principle

vn>1 P(n) of Mathematical
o Induction”

(¢)2001-2003, Michael P. Frank S 4.1 — Mathematical Induction 2

Outline of an Inductive Proof

 Want to prove ¥Vn P(n)...
» Base case (or basis step): Prove P(1).
* Inductive step: Prove Vk P(k)—>P(k+1).

— E.Q. use a direct proof:
— Let ke N, assume P(K). (inductive hypothesis)
— Under this assumption, prove P(k+1).

* Inductive inference rule then gives Vn P(n).

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 3

Induction Example (1st princ.)

* Prove that the sum of the first n odd
positive integers is n>. That is, prove:

vnx1:) (2i-1)=n’
J= Y

* Proof by induction. %)

— Base case: Let n=1. The sum of the first 1 odd
positive integer is 1 which equals 1-.

(Cont...)

(¢)2001-2003, Michael P. Frank S 4.1 — Mathematical Induction 4

 Inductive step: Prove Vk>1: P(k)—>P(k+1).
— Let k>1, assume P(k), and prove P(k+1).

k+1

> (2i-1) =(Zk:(2i —1))+(2(k+1)—1)

By inductive

2
= K™ +2k+1 hypothesis P(k)

=(k +1)°

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 5

Another Induction Example

* Prove that Vn>0, n<2". Let P(n)=(n<2")
— Base case: P(1)=(1<2D)=(1<2)=T.
— Inductive step: For k>0, prove P(k)—>P(k+1).

« Assuming k<2 prove k+1 < 2k+1,

* Note k+ 1 <2k+1 (by inductive hypothesis)

< 2k + 2K (because 1<2=2-20<2.2k-1= 2k)
= Jk+l1

e Sok + 1 <2k and we’re done.

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 6

Validity of Induction

Proof that Yk>1 P(K) is a valid consequent:
Given any k=1, ¥n>1 (P(n)—>P(n+1)) (antecedent
2) trivially implies ¥n>1 (n<k)—>(P(n)—>P(n+1)),
or (P(1)=>P(2)) A (P(2)=>PB)) A ... A

(P(k—1)—>P(k)). Repeatedly applying the
hypothetical syllogism rule to adjacent
implications k-1 times then gives P(1)—P(k);
which with P(1) (antecedent #1) and modus
ponens gives P(k). Thus Vk>1 P(k).

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 7

The Well-Ordering Property

» The validity of the inductive inference rule
can also be proved using the well-ordering
property, which says:

— Every non-empty set of non-negative integers
has a minimum (smallest) element.

— VYV @c=ScN : 3meS : VneS : m<n

* Implies {n|—P(n)} has a min. element m,
but then P(m-1)—P((m-1)+1) contradicted.

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 3

Generalizing Induction

» Can also be used to prove ¥n>c P(n) for a
given constant Ce Z, where maybe C#1.

— In this circumstance, the base case 1s to prove
P(C) rather than P(1), and the inductive step is to
prove Vk>c (P(K)—>P(k+1)).

* Induction can also be used to prove
vn=c P(a,) for an arbitrary series {a,}.

e Can reduce these to the form already shown.

(¢)2001-2003, Michael P. Frank § 4.1 — Mathematical Induction 9

34.2 : Strong Induction

» Characterized by another inference rule:
P(1) P is true in all previous cases

A

vk>1: (V1<i<k P(i)) = P(k+1)
-.vVnz1: P(n)
» Difference with 1st principle is that the

inductive step uses the fact that P(1) is true
for all smaller I<k+1, not just for I1=k.

(¢)2001-2003, Michael P. Frank § 4.2 — Strong Induction 10

Example of Second Principle

« Show that every n>1 can be written as a product
P,P,...Ps of some series of S prime numbers. Let
P(n)=“n has that property”

* Base case:
 Inductive step: Let k>2. Assume V2<i<k: P(1).

Consider k+1. If prime,
Else k+1=ab, where 1<a<k and 1<b<k.

(¢)2001-2003, Michael P. Frank § 4.2 — Strong Induction 11

Another 2nd Principle Example

* Prove that every amount of postage of 12
cents or more can be formed using just 4-
cent and 5-cent stamps.

« Base case:

 Inductive step: Let k>15, assume V12<i<k

P(i).

(¢)2001-2003, Michael P. Frank § 4.2 — Strong Induction 12

Proofs By Well-Ordering Property

» Use the well-ordering property to prove the
division algorithm: a=dq+r, 0 <r <|d|,
where (and r are unique.

—S={n|n=a-dq} is nonempty, so S has a
least element r =a —dq,. If r > 0, it is also the
case that r <d . If it were not,

- Ifa=dq,+r,=dq,+r,,0<r,, r,<|d],, then

(¢)2001-2003, Michael P. Frank § 4.2 — Strong Induction 13

§ 4.3 ¢ Recursive Definitions

 In induction, we prove all members of an infinite
set have some property P by proving the truth for
larger members in terms of that of smaller

members.

In recursive definitions, we similarly define a
function, a predicate or a set over an infinite
number of elements by defining the function or
predicate value or set-membership of larger
elements 1n terms of that of smaller ones.

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 14

Recursion

» Recursion is a general term for the practice
of defining an object in terms of itself (or of
part of itself).

* An inductive proof establishes the truth of

P(n+1) recursively in terms of P(n).

» There are also recursive algorithms,
definitions, functions, sequences, and sets.

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 15

Recursively Defined Functions

» Simplest case: One way to define a function
f:N—S (for any set S) or series a,=f(n) is to:
— Define f(0).
— For n>0, define f(n) in terms of f(0),....,f(n—1).

* E.g.: Define the series a,: = 2" recursively:
—Leta,:= 1.
— Forn>0, leta, : = 2a, .

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 16

Another Example

* Suppose we define f (n) for all neN
recursively by:

— Let f (0)=3
— For all neN, let f (n+1)=2f (n)+3

 What are the values of the following?
_f(l): ’ f(z): ’ f(3): ’ f(4):

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 17

Recursive definition of Factorial

* (G1ve an 1inductive definition of the factorial
function F(n) := n! := 2-3-...:N.
— Base case: F(0):= 1
— Recursive part: F(n) := n - F(n-1).

. F(1)=1
. F(2)=2
. F(3)=6

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 18

The Fibonacci Series

 The Fibonacci series f,., is a famous series
defined by:

Leonardo Fibonacci
1170-1250

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 19

Inductive Proof about Fib. series

* Theorem: f, <2". «—Implicitly for all neN
* Proof: By induction.
Base cases:

Inductive step: Use 2" principle of induction
(strong induction). Assume Vi<k, f <2
Then

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 20

Recursively Defined Sets

* An infinite set S may be defined
recursively, by giving:
— A small finite set of base elements of S.

— A rule for constructing new elements of S from
previously-established elements.

— Implicitly, S has no other elements but these.

« Example: Let 3€S, and let x+yeS if x,yeS.
What1s S ?

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 71

The Set of All Strings

« Given an alphabet X, the set X" of all strings
over 2 can be recursively defined as:
g e X (e:= 7, the empty string) .-

uses 7»

WeXIAXeX — WXeX

 Exercise: Prove that this definition 1s
equivalent to our old one: T U 3N

(¢)2001-2003, Michael P. Frank § 4.3 — Recursive Definitions 29

34.4 © Recursive Algorithms

e Recursive definitions can be used to

describe algorithms as well as functions
and sets.

« Example: A procedure to compute a".

procedure power(a #0: real, neN)

If n=0 then return 1
else return a - power(a, n—1)

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 73

Efficiency of Recursive Algorithms

* The time complexity of a recursive
algorithm may depend critically on the
number of recursive calls it makes.

« Example: Modular exponentiation to a

power N can take log(n) time 1f done right,
but linear time if done slightly differently.

— Task: Compute b" mod m, where
m>2, n>0, and 1<b<m.

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 24

Modular Exponentiation Alg. #1

Uses the fact that b" = b-b""! and that
Xy mod m = x:(y mod m) mod m.
(Prove the latter theorem at home.)

procedure mpower(b>1,n>0,m>b N)

{Returns b" mod m.}
If n=0 then return 1 else
return (b-mpower(b,n—1,m)) mod m

Note this algorithm takes ®(n) steps!

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 75

Modular Exponentiation Alg. #2

 Uses the fact that b? = b¥2 = (b¥)2.
procedure mpower(b,n,m) {same signature}

If n=0 then return 1
else If 2|n then

return mpower(b,n/2,m)> mod m
else return (mpower(b,n—1,m)-b) mod m

What 1s 1ts time complexity? ©(log n) steps

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 2%

A Slight Variation

Nearly 1dentical but takes ®(n) time instead!
procedure mpower(b,n,m) {same signature}

If n=0 then return 1
else If 2|n then

return (mpower(b,n/2,m)-
mpower(b,n/2,m)) mod m
else return (mpower(b,n—1,m)-b) mod m

The number of recursive calls made is critical.

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 27

Recursive Euclid’s Algorithm

procedure gcd(a,oeN)
If a=0 then return b
else return gcd(b mod a, a)

* Note recursive algorithms are often simpler
to code than iterative ones...

 However, they can consume more stack
space, 1f your compiler 1s not smart enough.

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 78

procedure sort(L=/,,..., £,)
If n>1 then
m:=|[n/2] {thisis rough 2-way point}
L := merge(sort(¢,,..., £.),
SOrt(l y1s--s £1))

return L

» The merge takes ®(n) steps, and merge-sort
takes @(n log n).

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 29

Example: Sort the list 27, 10, 12, 20, 25, 13, 15, 22.
27 10 12 20125 13 15 22

VAN

27 10'12 20 25 13'15 22

VAR VAR

27'10][12]20] [25113]|15122

RNV NR

27 10 12 20 25\\, 15\\,22
N N7

10 27(]12 20 13 25&15 22
N

10 12 20 27 13 15 22 25

/

10 12 13 15 20 22 25 27

(c)2001

Merge Routine

procedure merge(A, B: sorted lists)
L = empty list
1:=0, J:=0, k:=0
while iI<|A| A J<|B] {|A] is length of A}
IfiI=|A|then L, =B =]+ 1

else iIf j=|B| then L, :=A; 1:=1+1
else If A; <B;then L, :=A; 1:=1+1
else L, :==Bj; J:==]+1
K :=k+1
return L Takes O(|A[+|B|) time

(¢)2001-2003, Michael P. Frank S 4.4 — Recursive Algorithms 31

