Chap. 4

by Mingfu LI, CGUEE

Chapter 4: Induction and Recursion

(c)2001-2003, Michael P. Frank 1

§4.1: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate $P(n)$ is true for *every positive integer n*, no matter how large.
- Essentially a "domino effect" principle.
- •• Based on a predicate-logic inference rule: *P*(1)

 $\forall k \geq 1 \ (P(k) \rightarrow P(k+1))$ $\therefore \forall n \geq 1 \; P(n)$

"The First Principle of Mathematical Induction"

Outline of an Inductive Proof

- Want to prove $\forall n \ P(n) \dots$
- \bullet • *Base case* (or *basis step*): Prove $P(1)$.
- *Inductive step*: Prove $\forall k \ P(k) \rightarrow P(k+1)$.
	- $E.$ g. use a direct proof:
	- Let *k* **N**, assume *P* (*k*). (*inductive hypothesis inductive hypothesis*)
	- $-$ Under this assumption, prove $P(k+1)$.
- Inductive inference rule then gives $\forall n \ P(n)$.

Induction Example (1st princ.)

- Prove that the sum of the first *n* odd positive integers is n^2 . That is, prove: • Proof by induction. $\forall n \geq 1 : \sum_{i=1}^{n} (2i-1) = n^2$ 1 *i n* \sum $-1) =$ *P* (*n*)
	- $-$ Base case: Let $n=1$. The sum of the first 1 odd positive integer is 1 which equals 1^2 . (Cont …)

(c)2001-2003, Michael P. Frank \S 4.1 – Mathematical Induction 5

Another Induction Example

- Prove that $\forall n>0$, $n<2^n$. Let $P(n)=n<2$ *n*)
	- Base case: $P(1)= (1<2¹)=(1<2)=T$.
	- $-$ Inductive step: For $k > 0$, prove $P(k) \rightarrow P(k+1)$.
		- Assuming $k \le 2^k$, prove $k+1 \le 2^{k+1}$.
		- Note $k+1 < 2$ $k + 1$ (by inductive hypothesis) ≤ 2 $k+2$ *k* (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{k-1} = 2$ *k*) $= 2^{k+1}$
		- So $k + 1 < 2^{k+1}$, and we're done.

Validity of Induction

Proof that $\forall k \geq 1$ $P(k)$ is a valid consequent: Given any $k \geq 1$, $\forall n \geq 1$ ($P(n) \rightarrow P(n+1)$) (antecedent 2) trivially implies $\forall n \geq 1 \ (n \leq k) \rightarrow (P(n) \rightarrow P(n+1)),$ or $(P(1) \rightarrow P(2)) \land (P(2) \rightarrow P(3)) \land \dots \land$ $(P(k-1) \rightarrow P(k))$. Repeatedly applying the hypothetical syllogism rule to adjacent hypothetical syllogism rule to adjacent implications $k-1$ times then gives $P(1) \rightarrow P(k)$; which with $P(1)$ (antecedent #1) and *modus ponens* gives $P(k)$. Thus $\forall k \geq 1$ $P(k)$.

The Well-Ordering Property

- The validity of the inductive inference rule can also be proved using the *well-ordering property*, which says:
	- Every non-empty set of non-negative integers has a minimum (smallest) element.

— ∀ Ø⊂S⊆N : ∃m∈S : ∀n∈S : m≤n

• Implies $\{n | \neg P(n)\}$ has a min. element *m*, but then $P(m-1) \rightarrow P((m-1)+1)$ contradicted.

Generalizing Induction

- Can also be used to prove $\forall n \ge c$ $P(n)$ for a given constant $c \in \mathbf{Z}$, where maybe $c \neq 1$.
	- In this circumstance, the base case is to prove $P(c)$ rather than $P(1)$, and the inductive step is to prove $\forall k \ge c$ $(P(k) \rightarrow P(k+1))$.
- Induction can also be used to prove $\forall n \ge c$ *P*(*a*_n) for an arbitrary series {*a*_n}.
- •Can reduce these to the form already shown. Can reduce these to the form already shown.

Example of Second Principle

- Show that every $n>1$ can be written as a product $p_1 p_2 \ldots p_s$ of some series of s prime numbers. Let $P(n) =$ ["] *n* has that property"
- •Base case:
- •• Inductive step: Let $k \geq 2$. Assume $\forall 2 \leq i \leq k$: $P(i)$. Consider $k+1$. If prime,

Else $k+1=a$ *b*, where $1 < a \leq k$ and $1 < b \leq k$.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4 cent and 5-cent stamps.
- •Base case:
- •• Inductive step: Let $k \ge 15$, assume $\forall 12 \le i \le k$ *P* (*i*).

Proofs By Well-Ordering Property

- Use the well-ordering property to prove the division algorithm: $a = dq + r$, $0 \le r < |d|$, where *q* and *r* are unique.
	- $S = \{ n | n = a \}$ – $-dq \}$ is nonempty, so *S* has a least element *r* = *a* – $-dq_0$. If $r \geq 0$, it is also the case that $r < d$. If it were not,

$$
- \text{ If } a = dq_1 + r_1 = dq_2 + r_2, \ 0 \le r_1, \ r_2 < |d|, \ , \text{ then}
$$

(c)2001-2003, Michael P. Frank $\begin{array}{c} \text{S} \\ \text{4.2} \\ \text{S} \end{array}$ +.2 \rightarrow Strong Induction 13 \S 4.2 – Strong Induction

§ 4.3 :Recursive Definitions

- In induction, we *prove* all members of an infinite set have some property P by proving the truth for larger members in terms of that of smaller members.
- •In *recursive definitions*, we similarly *define* a function, a predicate or a set over an infinite number of elements by defining the function or predicate value or set-membership of larger elements in terms of that of smaller ones.

• There are also recursive *algorithms*, *definitions definitions*, *functions functions*, *sequences sequences*, and *sets*.

Recursively Defined Functions

- Simplest case: One way to define a function $f:\mathbb{N}\rightarrow S$ (for any set S) or series $a_n = f(n)$ is to:
	- Define *f*(0).
	- *−* For *n*>0, define *f*(*n*) in terms of *f*(0),...,*f*(*n*−1).
- $E.g.:$ Define the series $a_n := 2$ *n* recursively: $-$ Let a_0 : $\equiv 1$. $-$ For *n*>0, let $a_n := 2a_{n-1}$.

Recursive definition of Factorial

- Give an inductive definition of the factorial $\text{function } F(n) : \equiv n! : \equiv 2 \cdot 3 \cdot \ldots \cdot n.$
	- $-$ Base case: $F(0)$: $\equiv 1$
	- $-$ Recursive part: $F(n)$: $\equiv n \cdot F(n-1)$.
		- $F(1)=1$
		- $F(2)=2$
		- $F(3)=6$

(c)2001-2003, Michael P. Frank \S 4.3 – Recursive Definitions 19

Inductive Proof about Fib. series

- Theorem: $f_n < 2$ *n* \longleftarrow Implicitly for all $n \in \mathbb{N}$
- Proof: By induction.

Base cases:

Inductive step: Use 2nd principle of induction (strong induction). Assume $\forall i \leq k$, $f_i < 2$ *i .* Then

Recursively Defined Sets

- An infinite set S may be defined recursively, by giving:
	- $-$ A small finite set of *base* elements of S.
	- A rule for constructing new elements of S from previously-established elements.
	- Implicitly, S has no other elements but these.
- •• **Example:** Let $3 \in S$, and let $x+y \in S$ if $x,y \in S$. What is *S* ?

 n E $\mathbf N$

n

The Set of All Strings

- Given an alphabet Σ , the set Σ $*$ of all strings over Σ can be recursively defined as: ε Σ * $(\epsilon := \omega$, the empty string) $w \in \Sigma^* \wedge x \in \Sigma \rightarrow wx \in \Sigma$ * Book uses λ
- Exercise: Prove that this definition is equivalent to our old one: \bigcup \ast $\sum^* \: :=$ \sum

§4.4 :Recursive Algorithms

- Recursive definitions can be used to describe *algorithms* as well as functions and sets.
- Example: A procedure to compute *a n*. $\mathbf{procedure} \ power(a \neq 0 \colon \mathbf{real}, \, n \! \in \! \mathbf{N})$ $\mathbf{if} \; n = 0 \; \mathbf{then} \; \mathbf{return} \; 1$ **else return** *a* · *power* (*a*, *n* [−]1)

Efficiency of Recursive Algorithms

- The time complexity of a recursive algorithm may depend critically on the number of recursive calls it makes.
- Example: *Modular exponentiation* to a power *n* can take log(*n*) time if done right, but linear time if done slightly differently. but linear time if done slightly differently.

 Task: Compute Task: Compute *b n* **mod** *^m*, where , where *m≥*2, *n≥*0, and 1≤*b<m*.

Modular Exponentiation Alg. #1

Uses the fact that *b* $p = b \cdot b$ *n* $^{-1}$ and that $x \cdot y \mod m = x \cdot (y \mod m) \mod m.$ (Prove the latter theorem at home.) (Prove the latter theorem at home.) $\mathbf{procedure}\ mpower(b\geq1,n\geq0,m\!>\!b \in\mathbf{N})$ {Returns {Returns *b n* **mod** *^m*.} **if** $n=0$ **then return** 1 **else return** (*b·mpower* (*b* , *n* [−]1, *^m*)) **mod** *m*

Note this algorithm takes $\Theta(n)$ steps!

Modular Exponentiation Alg. #2

• Uses the fact that *b* 2 *k* $\mathscr{k} = b$ $k \cdot 2 = (b$ *k* $)^2.$ **procedure procedure** *mpower* (*b* , *n* , *^m*) {same signature}) {same signature} **if** $n=0$ then return 1 **else if else if** 2| *n* **then return** *mpower* (*b* , *ⁿ*/2, *m*) 2 **mod** *m* **else return** (*mpower*(*b*,*n*—1,*m*)·*b*) **mod** *m* What is its time complexity? $Θ(\log n)$ steps

A Slight Variation

```
Nearly identical but takes Θ(n) time instead!
procedure procedure mpower
(
b
,
n
,
m) {same signature} ) {same signature}
  if n=0 then return 1else if else if 2|
n then
      return
(mpower
(
b
,
n/2,
m
)·
          mpower
(
b
,
n/2,
m)) mod
m
  else return (mpower(b,n—1,m)·b) mod m
```
The number of recursive calls made is critical.

(c)2001-2003, Michael P. Frank \S 4.4 – Recursive Algorithms 27

Recursive Euclid's Algorithm

procedure procedure *gcd* (*a* , *b* **N**) **if***a* = 0 **then return** *b***else return** $gcd(b \textbf{ mod } a, a)$

- Note recursive algorithms are often simpler to code than iterative ones...
- However, they can consume more stack space, if your compiler is not smart enough.

W Mingfu LI, CGUEE

Merge Routine

procedure procedure *merge* (*A*, *^B*: sorted lists) : sorted lists) L = empty list *i*:=0, *j*:=0, *k*:=0 while $i<|A| \wedge j<|B|$ {|A| is length of A} $\mathbf{if} \ i \!\!=\!\! |\! A| \ \mathbf{then} \ L_k \mathbin{:=} B_j; \ j \mathbin{:=} j+1$ $\mathbf{else} \text{ if } j = |B| \text{ then } L_k := A_i; \ \ i := i+1$ \boldsymbol{e} ls \boldsymbol{e} if $A_i < B_j$ then $L_k := A_i; \ \ i := i+1$ **else** $L_k := B_j$; $j := j + 1$ $k := k+1$ **return***L* \blacktriangle Takes $\Theta(|A|+|B|)$ time

(c)2001-2003, Michael P. Frank \S 4.4 – Recursive Algorithms 31