Chap. 4

by Mingfu LI, CGUEE

Chapter 4: Induction and Recursion

(c)2001-2003, Michael P. Frank

§4.1: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate *P*(*n*) is true for *every positive integer n*, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule: P(1) $\forall h > 1$ (D(h) > D(h + 1)) "The First Principle

 $\frac{\forall k \ge 1 \ (P(k) \rightarrow P(k+1))}{\therefore \forall n \ge 1 \ P(n)}$

"The First Principle of Mathematical Induction"

Outline of an Inductive Proof

- Want to prove $\forall n P(n) \dots$
- *Base case* (or *basis step*): Prove *P*(1).
- *Inductive step*: Prove $\forall k \ P(k) \rightarrow P(k+1)$.
 - -E.g. use a direct proof:
 - Let $k \in \mathbb{N}$, assume P(k). (inductive hypothesis)
 - Under this assumption, prove P(k+1).
- Inductive inference rule then gives $\forall n P(n)$.

Induction Example (1st princ.)

- Prove that the sum of the first *n* odd positive integers is *n*². That is, prove: ∀n ≥ 1: ∑_{i=1}ⁿ (2i-1) = n²
 Proof by induction. P(n)
 Base case: Let n=1. The sum of the first 1
 - Base case: Let *n*=1. The sum of the first 1 odd positive integer is 1 which equals 1².
 (Cont...)

(c)2001-2003, Michael P. Frank

§ 4.1 – Mathematical Induction

5

Another Induction Example

- Prove that $\forall n > 0$, $n < 2^n$. Let $P(n) = (n < 2^n)$
 - Base case: $P(1)=(1<2^1)=(1<2)=T$.
 - Inductive step: For k > 0, prove $P(k) \rightarrow P(k+1)$.
 - Assuming $k < 2^k$, prove $k+1 < 2^{k+1}$.
 - Note $k + 1 < 2^k + 1$ (by inductive hypothesis) $< 2^k + 2^k$ (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{k-1} = 2^k$) $= 2^{k+1}$
 - So $k + 1 < 2^{k+1}$, and we're done.

Validity of Induction

Proof that $\forall k \ge 1 P(k)$ is a valid consequent: Given any $k \ge 1$, $\forall n \ge 1$ ($P(n) \rightarrow P(n+1)$) (antecedent) 2) trivially implies $\forall n \geq 1$ $(n \leq k) \rightarrow (P(n) \rightarrow P(n+1))$, or $(P(1) \rightarrow P(2)) \land (P(2) \rightarrow P(3)) \land \dots \land$ $(P(k-1) \rightarrow P(k))$. Repeatedly applying the hypothetical syllogism rule to adjacent implications k-1 times then gives $P(1) \rightarrow P(k)$; which with P(1) (antecedent #1) and modus ponens gives P(k). Thus $\forall k \ge 1 P(k)$.

The Well-Ordering Property

- The validity of the inductive inference rule can also be proved using the *well-ordering property*, which says:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.

 $- \forall \varnothing \subseteq S \subseteq \mathbf{N} : \exists m \in S : \forall n \in S : m \leq n$

• Implies $\{n | \neg P(n)\}$ has a min. element *m*, but then $P(m-1) \rightarrow P((m-1)+1)$ contradicted.

Generalizing Induction

- Can also be used to prove $\forall n \ge c P(n)$ for a given constant $c \in \mathbb{Z}$, where maybe $c \ne 1$.
 - In this circumstance, the base case is to prove P(c) rather than P(1), and the inductive step is to prove $\forall k \ge c \ (P(k) \rightarrow P(k+1))$.
- Induction can also be used to prove $\forall n \ge c P(a_n)$ for an arbitrary series $\{a_n\}$.
- Can reduce these to the form already shown.

Example of Second Principle

- Show that every n>1 can be written as a product p₁p₂...p_s of some series of *s* prime numbers. Let P(n)="n has that property"
- Base case:
- Inductive step: Let $k \ge 2$. Assume $\forall 2 \le i \le k$: P(i). Consider k+1. If prime,

Else k+1=ab, where $1 < a \le k$ and $1 < b \le k$.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
- Base case:
- Inductive step: Let $k \ge 15$, assume $\forall 12 \le i \le k$ P(i).

Proofs By Well-Ordering Property

- Use the well-ordering property to prove the division algorithm: a = dq + r, $0 \le r \le |d|$, where q and r are unique.
 - $-S = \{ n \mid n = a dq \}$ is nonempty, so *S* has a least element $r = a dq_0$. If $r \ge 0$, it is also the case that r < d. If it were not,

- If
$$a = dq_1 + r_1 = dq_2 + r_2, 0 \le r_1, r_2 \le |d|$$
, then

§ 4.2 – Strong Induction

§ 4.3 : Recursive Definitions

- In induction, we *prove* all members of an infinite set have some property *P* by proving the truth for larger members in terms of that of smaller members.
- In *recursive definitions*, we similarly *define* a function, a predicate or a set over an infinite number of elements by defining the function or predicate value or set-membership of larger elements in terms of that of smaller ones.

• There are also recursive *algorithms*, *definitions*, *functions*, *sequences*, and *sets*.

15

Recursively Defined Functions

- Simplest case: One way to define a function $f: \mathbb{N} \rightarrow S$ (for any set *S*) or series $a_n = f(n)$ is to:
 - Define f(0).
 - For n > 0, define f(n) in terms of $f(0), \dots, f(n-1)$.
- *E.g.*: Define the series a_n:≡ 2ⁿ recursively:
 Let a₀:≡ 1.
 For n>0, let a_n:≡ 2a_{n-1}.

Recursive definition of Factorial

- Give an inductive definition of the factorial function $F(n) :\equiv n! :\equiv 2 \cdot 3 \cdot ... \cdot n$.
 - Base case: $F(0) :\equiv 1$
 - Recursive part: $F(n) :\equiv n \cdot F(n-1)$.
 - *F*(1)=1
 - *F*(2)=2
 - *F*(3)=6

(c)2001-2003, Michael P. Frank

§ 4.3 – Recursive Definitions

19

Inductive Proof about Fib. series

- **Theorem:** $f_n < 2^n$. Implicitly for all $n \in \mathbb{N}$
- **Proof:** By induction.

Base cases:

Inductive step: Use 2^{nd} principle of induction (strong induction). Assume $\forall i < k, f_i < 2^i$. Then

Recursively Defined Sets

- An infinite set *S* may be defined recursively, by giving:
 - A small finite set of *base* elements of *S*.
 - A rule for constructing new elements of S from previously-established elements.
 - Implicitly, *S* has no other elements but these.
- **Example:** Let $3 \in S$, and let $x+y \in S$ if $x,y \in S$. What is S?

 $n \in \mathbb{N}$

22

The Set of All Strings

- Given an alphabet Σ, the set Σ* of all strings over Σ can be recursively defined as:
 ε ∈ Σ* (ε :≡ "", the empty string) Book uses λ
 w ∈ Σ* ∧ x ∈ Σ → wx ∈ Σ*
- Exercise: Prove that this definition is equivalent to our old one: $\Sigma^* := \bigcup \Sigma^*$

§4.4 : Recursive Algorithms

- Recursive definitions can be used to describe *algorithms* as well as functions and sets.
- Example: A procedure to compute aⁿ.
 procedure power(a ≠0: real, n∈N)
 if n = 0 then return 1
 else return a · power(a, n−1)

Efficiency of Recursive Algorithms

- The time complexity of a recursive algorithm may depend critically on the number of recursive calls it makes.
- Example: *Modular exponentiation* to a power *n* can take log(*n*) time if done right, but linear time if done slightly differently.

- Task: Compute $b^n \mod m$, where $m \ge 2$, $n \ge 0$, and $1 \le b \le m$.

Modular Exponentiation Alg. #1

Uses the fact that $b^n = b \cdot b^{n-1}$ and that $x \cdot y \mod m = x \cdot (y \mod m) \mod m$. (Prove the latter theorem at home.) **procedure** $mpower(b \ge 1, n \ge 0, m > b \in \mathbb{N})$ {Returns $b^n \mod m$.} **if** n=0 **then return** 1 **else return** $(b \cdot mpower(b, n-1, m)) \mod m$

Note this algorithm takes $\Theta(n)$ steps!

Modular Exponentiation Alg. #2

• Uses the fact that $b^{2k} = b^{k \cdot 2} = (b^k)^2$. procedure mpower(b,n,m) {same signature} if *n*=0 then return 1 else if 2|*n* then return *mpower*(b,n/2,m)² mod melse return ($mpower(b,n-1,m)\cdot b$) mod m What is its time complexity? $\Theta(\log n)$ steps

A Slight Variation

```
Nearly identical but takes \Theta(n) time instead!

procedure mpower(b,n,m) {same signature}

if n=0 then return 1

else if 2|n then

return (mpower(b,n/2,m) \cdot mpower(b,n/2,m)) mod m

else return (mpower(b,n-1,m) \cdot b) mod m
```

The number of recursive calls made is critical.

§ 4.4 – Recursive Algorithms

Recursive Euclid's Algorithm

procedure $gcd(a,b \in \mathbf{N})$ if a = 0 then return belse return $gcd(b \mod a, a)$

- Note recursive algorithms are often simpler to code than iterative ones...
- However, they can consume more stack space, if your compiler is not smart enough.

• The merge takes $\Theta(n)$ steps, and merge-sort takes $\Theta(n \log n)$.

by Mingfu LI, CGUEE

31

Merge Routine

procedure *merge*(A, B: sorted lists) L = empty listi:=0, j:=0, k:=0while $i < |A| \land j < |B|$ {|A| is length of A } if i = |A| then $L_k := B_j; j := j + 1$ else if j=|B| then $L_k := A_i$; i := i+1else if $A_i < B_i$ then $L_k := A_i$; i := i + 1**else** $L_k := B_j; j := j + 1$ k := k+1return L Takes $\Theta(|A|+|B|)$ time

(c)2001-2003, Michael P. Frank

4.4 – Recursive Algorithms