
(c)2001-2003, Michael P. Frank 1

Chap. 4

Chapter 4:
Induction and Recursion

(c)2001-2003, Michael P. Frank 2

Chap. 4

§4.1: Mathematical Induction

•• A powerful, rigorous technique for proving A powerful, rigorous technique for proving
that a predicate that a predicate PP((nn) is true for) is true for everyevery
positive integerpositive integer nn, no matter how large., no matter how large.

•• Essentially a Essentially a ““domino effectdomino effect”” principle.principle.
•• Based on a predicateBased on a predicate--logic inference rule: logic inference rule:

PP(1)(1)
kk11 ((PP((kk))PP((kk+1))+1))
nn11 PP((nn))

“The First Principle
of Mathematical

Induction”

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 3

Chap. 4

Outline of an Inductive Proof

•• Want to prove Want to prove nn PP((nn))……
•• Base caseBase case (or (or basis stepbasis step): Prove): Prove PP(1).(1).
•• Inductive stepInductive step: Prove : Prove kk PP((kk))PP((kk+1).+1).

–– E.g.E.g. use a direct proof:use a direct proof:
–– Let Let kkNN, , assume assume PP((kk)). (. (inductive hypothesisinductive hypothesis))
–– Under this assumption, Under this assumption, prove prove PP((kk+1)+1)..

•• Inductive inference rule then gives Inductive inference rule then gives nn PP((nn).).

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 4

Chap. 4

Induction Example (1st princ.)

•• Prove that the sum of the first Prove that the sum of the first nn odd odd
positive integers is positive integers is nn22. That is, prove:. That is, prove:

•• Proof by induction.Proof by induction.
–– Base case: Let Base case: Let nn=1. The sum of the first 1 odd =1. The sum of the first 1 odd

positive integer is 1 which equals 1positive integer is 1 which equals 122..
(Cont(Cont……))

2

1
)12(:1 nin

n

i
 



P(n)

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 5

Chap. 4

Example cont.

•• Inductive step: Prove Inductive step: Prove kk1: 1: PP((kk))PP((kk+1).+1).
–– Let Let kk1, assume 1, assume PP((kk), and prove), and prove PP((kk+1).+1).

2

2

1

1

1

)1(
12

)1)1(2()12()12(













 







k
kk

kii
k

i

k

i
By inductive

hypothesis P(k)

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 6

Chap. 4

Another Induction Example

•• Prove that Prove that nn>0, >0, nn<2<2nn. Let . Let PP((nn)=()=(nn<2<2nn))
–– Base case: Base case: PP(1)=(1<2(1)=(1<211)=(1<2)=)=(1<2)=TT..
–– Inductive step: For Inductive step: For kk>0, prove >0, prove PP((kk))PP((kk+1).+1).

•• Assuming Assuming kk<2<2kk, prove , prove kk+1 < 2+1 < 2kk+1+1..
•• Note Note k k + 1 < 2+ 1 < 2kk + 1 (by inductive hypothesis)+ 1 (by inductive hypothesis)

< 2< 2kk + 2+ 2kk (because 1<2=2(because 1<2=2222222kk--11= 2= 2kk))
= 2= 2kk+1+1

•• So So k k + 1 < 2+ 1 < 2kk+1+1, and we, and we’’re done.re done.

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 7

Chap. 4

Validity of Induction

Proof that Proof that kk11 PP((kk) is a valid consequent:) is a valid consequent:
Given any Given any kk1, 1, nn11 ((PP((nn))PP((nn+1)) (antecedent +1)) (antecedent
2) trivially implies 2) trivially implies nn1 (1 (nn<<kk))((PP((nn))PP((nn+1)), +1)),
or (or (PP(1)(1)PP(2)) (2))  ((PP(2)(2)PP(3)) (3))  …… 
((PP((kk1)1)PP((kk)). Repeatedly applying the)). Repeatedly applying the
hypothetical syllogism rule to adjacent hypothetical syllogism rule to adjacent
implications implications kk--1 times then gives 1 times then gives PP(1)(1)PP((kk););
which with which with PP(1) (antecedent #1) and (1) (antecedent #1) and modus modus
ponensponens gives gives PP((kk). Thus). Thus kk11 PP((kk).).

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 8

Chap. 4

The Well-Ordering Property

•• The validity of the inductive inference rule The validity of the inductive inference rule
can also be proved using the can also be proved using the wellwell--ordering ordering
propertyproperty, which says:, which says:
–– Every nonEvery non--empty set of nonempty set of non--negative integers negative integers

has a minimum (smallest) element.has a minimum (smallest) element.
––  SSNN : : mmSS : : nnSS : : mmnn

•• Implies {Implies {nn||PP((nn)} has a min. element)} has a min. element mm, ,
but then but then PP((mm--1)1)PP((((mm--1)+1) contradicted.1)+1) contradicted.

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 9

Chap. 4

Generalizing Induction

•• Can also be used to prove Can also be used to prove nncc PP((nn) for a) for a
given constant given constant ccZZ, where maybe , where maybe cc1.1.
–– In this circumstance, the base case is to prove In this circumstance, the base case is to prove

PP((cc) rather than) rather than PP(1), and the inductive step is to (1), and the inductive step is to
prove prove kkcc ((PP((kk))PP((kk+1)).+1)).

•• Induction can also be used to proveInduction can also be used to prove
nncc PP((aann) for an arbitrary series {) for an arbitrary series {aann}}..

•• Can reduce these to the form already shown.Can reduce these to the form already shown.

§ 4.1 – Mathematical Induction

(c)2001-2003, Michael P. Frank 10

Chap. 4

§4.2：Strong Induction

•• Characterized by another inference rule:Characterized by another inference rule:
PP(1)(1)
kk1: (1: (11iikk PP((ii))))  PP((kk+1)+1)
nn1: 1: PP((nn))

•• Difference with 1st principle is that the Difference with 1st principle is that the
inductive step uses the fact that inductive step uses the fact that PP((ii) is true) is true
for for allall smaller smaller i<ki<k+1+1,, not just for not just for ii==kk..

P is true in all previous cases

§ 4.2 – Strong Induction

(c)2001-2003, Michael P. Frank 11

Chap. 4

Example of Second Principle

•• Show that every Show that every nn>1 can be written as a product >1 can be written as a product
pp11pp22……ppss of some series of of some series of ss prime numbers.prime numbers. Let Let
PP((nn)=)=““nn has that propertyhas that property””

•• Base case:Base case:
•• Inductive step: Let Inductive step: Let kk2. 2. Assume Assume 22iikk: : PP((ii))..

Consider Consider kk+1. +1. If primeIf prime, ,
ElseElse kk+1=+1=abab, where 1, where 1aakk and 1and 1bbkk..

§ 4.2 – Strong Induction

(c)2001-2003, Michael P. Frank 12

Chap. 4

Another 2nd Principle Example

•• Prove that every amount of postage of 12 Prove that every amount of postage of 12
cents or more can be formed using just 4cents or more can be formed using just 4--
cent and 5cent and 5--cent stampscent stamps..

•• Base case:Base case:

•• Inductive step: Let Inductive step: Let kk15, assume 15, assume 1212iikk
PP((ii).).

§ 4.2 – Strong Induction

(c)2001-2003, Michael P. Frank 13

Chap. 4

Proofs By Well-Ordering Property

•• Use the wellUse the well--ordering property to prove the ordering property to prove the
division algorithm: division algorithm: aa = = dqdq + + rr, 0 , 0  rr < |< |d|, d|,
wherewhere q q andand r r are uniqueare unique..
–– SS = { = { n n | | n n = = a a –– dqdq } is nonempty, so } is nonempty, so SS has a has a

least element least element rr = = aa –– dqdq0 0 . . If If rr  0, it is also the 0, it is also the
case that case that rr < < dd . If it were not, . If it were not,

–– If If aa = = dqdq11 + + rr1 1 = = dqdq22 + + rr22, 0 , 0  rr1 1 ,, rr22 < |< |d|, d|, , then , then

§ 4.2 – Strong Induction

(c)2001-2003, Michael P. Frank 14

Chap. 4

§ 4.3：Recursive Definitions

•• In In inductioninduction, we , we proveprove all members of an infinite all members of an infinite
set have some property set have some property PP by proving the truth for by proving the truth for
larger members in terms of that of smaller larger members in terms of that of smaller
members.members.

•• In In recursive definitionsrecursive definitions, we similarly , we similarly definedefine a a
function, a predicate or a set over an infinite function, a predicate or a set over an infinite
number of elements by defining the function or number of elements by defining the function or
predicate value or setpredicate value or set--membership of membership of larger larger
elements in terms of that of smaller oneselements in terms of that of smaller ones..

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 15

Chap. 4

Recursion

•• RecursionRecursion is a general term for the practice is a general term for the practice
of defining an object in terms of of defining an object in terms of itselfitself (or of (or of
part of itself).part of itself).

•• An inductive proof establishes the truth of An inductive proof establishes the truth of
PP((nn+1) +1) recursivelyrecursively in terms of in terms of PP((nn).).

•• There are also There are also recursive recursive algorithmsalgorithms, ,
definitionsdefinitions, , functionsfunctions, , sequencessequences, and , and setssets..

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 16

Chap. 4

Recursively Defined Functions

•• Simplest case: One way to define a function Simplest case: One way to define a function
ff::NNSS (for any set (for any set SS) or series) or series aann==ff((nn) is to:) is to:
–– Define Define ff(0).(0).
–– For For nn>0, define >0, define ff((nn) in terms of) in terms of ff(0),(0),……,,ff((nn−−1).1).

•• E.g.E.g.: Define the series : Define the series aan n ::≡≡ 22nn recursively:recursively:
–– Let Let aa0 0 ::≡≡ 1.1.
–– For For nn>0, let >0, let aann ::≡≡ 22aann--11..

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 17

Chap. 4

Another Example

•• Suppose we define Suppose we define f f ((nn) for all) for all nnNN
recursively by:recursively by:
–– Let Let f f (0)=3(0)=3
–– For all For all nnNN, let, let f f ((nn+1)=2+1)=2f f ((nn)+3)+3

•• What are the values of the following?What are the values of the following?
–– f f (1)= (1)= , , f f (2)= (2)= , , f f (3)= (3)= , , f f (4)= (4)=

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 18

Chap. 4

Recursive definition of Factorial

•• Give an inductive definition of the factorial Give an inductive definition of the factorial
function function FF((nn) :) :≡≡ nn! :! :≡≡ 2233……nn..
–– Base case: Base case: FF(0) (0) ::≡≡ 11
–– Recursive part: Recursive part: FF((nn)) ::≡≡ n n  FF((nn--1)1)..

•• FF(1)=1(1)=1
•• FF(2)=2(2)=2
•• FF(3)=6(3)=6

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 19

Chap. 4

The Fibonacci Series

•• The The Fibonacci seriesFibonacci series ffnn≥≥00 is a famous series is a famous series
defined by:defined by:

ff00 ::≡≡ 0, 0, ff11 ::≡≡ 1, 1, ffnn≥≥22 ::≡≡ ffnn−−11 + + ffnn−−22

Leonardo Fibonacci
1170-1250

0
1 1

2 3
5 8

13

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 20

Chap. 4

Inductive Proof about Fib. series

•• Theorem:Theorem: ffnn < < 22nn..
•• Proof:Proof: By induction.By induction.
Base cases:Base cases:

Inductive step: Use Inductive step: Use 22ndnd principle of inductionprinciple of induction
(strong induction). Assume (strong induction). Assume ii<<kk, , ffii < < 22ii. .
Then Then

Implicitly for all nN

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 21

Chap. 4

Recursively Defined Sets

•• An infinite set An infinite set SS may be defined may be defined
recursively, by giving:recursively, by giving:
–– A small finite set of A small finite set of basebase elements of elements of SS..
–– A rule for constructing new elements of A rule for constructing new elements of SS from from

previouslypreviously--established elements.established elements.
–– Implicitly, Implicitly, SS has no other elements but these.has no other elements but these.

•• Example:Example: Let 3Let 3SS, and let , and let xx++yySS if if xx,,yySS..
What is What is S S ??

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 22

Chap. 4

The Set of All Strings

•• Given an alphabet Given an alphabet ΣΣ, the set , the set ΣΣ** of all strings of all strings
over over ΣΣ can be recursively defined as:can be recursively defined as:

εε  ΣΣ** ((εε ::≡≡ “”“”, the empty string), the empty string)
ww  ΣΣ* *  xx  ΣΣ →→ wxwx  ΣΣ**

•• Exercise: Prove that this definition is Exercise: Prove that this definition is
equivalent to our old one: equivalent to our old one:

Book
uses λ


N

 
n

n:

§ 4.3 – Recursive Definitions

(c)2001-2003, Michael P. Frank 23

Chap. 4

§4.4：Recursive Algorithms

•• Recursive definitions can be used to Recursive definitions can be used to
describe describe algorithmsalgorithms as well as functions as well as functions
and sets.and sets.

•• Example: Example: A procedure to compute A procedure to compute aann..
procedureprocedure powerpower((aa≠≠0: real, 0: real, nnNN))

ifif n n = 0 = 0 then return then return 11
elseelse returnreturn a a ·· powerpower((aa, , nn−−1)1)

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 24

Chap. 4

Efficiency of Recursive Algorithms

•• The time complexity of a recursive The time complexity of a recursive
algorithm may depend critically on the algorithm may depend critically on the
number of recursive calls it makes.number of recursive calls it makes.

•• Example: Example: Modular exponentiationModular exponentiation to a to a
power power nn can take can take log(log(nn) time) time if done right, if done right,
but linear time if done slightly differently.but linear time if done slightly differently.
–– Task: Compute Task: Compute bbnn modmod mm, where, where

mm≥≥2, 2, nn≥≥0, and 10, and 1≤≤bb<<mm..

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 25

Chap. 4

Modular Exponentiation Alg. #1

Uses the fact that Uses the fact that bbnn = = bb··bbnn−−11 and that and that
xx··yy mod mod m = xm = x··((yy modmod mm)) mod mod mm..
(Prove the latter theorem at home.)(Prove the latter theorem at home.)

procedure procedure mpowermpower((bb≥≥1,1,nn≥≥0,0,m>b m>b NN))
{Returns {Returns bbnn mod mod mm.}.}
ifif nn=0 =0 then return then return 1 1 elseelse
return return ((bb··mpowermpower((bb,,nn−−1,1,mm)))) modmod mm

Note this algorithm takes Note this algorithm takes ΘΘ((nn)) steps!steps!

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 26

Chap. 4

Modular Exponentiation Alg. #2

•• Uses the fact that Uses the fact that bb22kk = = bbkk··22 = (= (bbkk))22..
procedureprocedure mpowermpower((bb,,nn,,mm) {same signature}) {same signature}

if if nn=0 =0 then return then return 11
else ifelse if 2|2|nn thenthen

returnreturn mpowermpower((bb,,nn/2,/2,mm))22 modmod mm
else returnelse return ((mpowermpower((bb,,nn−−1,1,mm))··bb)) modmod mm

What is its time complexity?What is its time complexity? Θ(log n) steps

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 27

Chap. 4

A Slight Variation

Nearly identical but takes Nearly identical but takes ΘΘ((nn)) time instead!time instead!
procedureprocedure mpowermpower((bb,,nn,,mm) {same signature}) {same signature}

if if nn=0 =0 then return then return 11
else ifelse if 2|2|nn thenthen

returnreturn ((mpowermpower((bb,,nn/2,/2,mm))··
mpowermpower((bb,,nn/2,/2,mm)))) modmod mm

else returnelse return ((mpowermpower((bb,,nn−−1,1,mm))··bb)) modmod mm
The number of recursive calls made is critical.

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 28

Chap. 4

Recursive Euclid’s Algorithm

procedureprocedure gcdgcd((aa,,bbNN))
ifif aa = 0 = 0 thenthen return return bb
else returnelse return gcdgcd((bb modmod aa, , aa))

•• Note recursive algorithms are often simpler Note recursive algorithms are often simpler
to code than iterative onesto code than iterative ones……

•• However, they can consume more stack However, they can consume more stack
space, if your compiler is not smart enough.space, if your compiler is not smart enough.

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 29

Chap. 4

Merge Sort

procedure procedure sortsort((LL = = 11,,……, , nn))
ifif nn>1 >1 thenthen

mm := := nn/2/2 {this is rough {this is rough ½½--way point}way point}
LL := := mergemerge((sortsort((11,,……, , mm),),

sortsort((m+m+11,,……, , nn))))
returnreturn LL

•• The merge takes The merge takes ΘΘ((nn)) steps, and mergesteps, and merge--sort sort
takes takes ΘΘ((nn log log nn))..

§ 4.4 – Recursive Algorithms

(c)2001-2003, Michael P. Frank 30

Chap. 4
Example:Example: Sort the list 27, 10, 12, 20, 25, 13, 15, 22.Sort the list 27, 10, 12, 20, 25, 13, 15, 22.

27 10 12 20 25 13 15 22

27 10 12 20 25 13 15 22

27 10 12 20 25 13 15 22

27 10 12 20 25 13 15 22

10 27 12 20 13 25 15 22

10 12 20 27 13 15 22 25

10 12 13 15 20 22 25 27

(c)2001-2003, Michael P. Frank 31

Chap. 4

Merge Routine

procedureprocedure mergemerge((AA, , BB: sorted lists): sorted lists)
LL = empty list= empty list
ii:=0, :=0, jj:=0, :=0, kk:=0:=0
whilewhile ii<|<|AA| |  jj<|<|BB| {|| {|AA| is length of | is length of AA}}

ifif ii=|=|AA| | thenthen LLkk := := BBjj; ; jj := := jj + 1+ 1
else if else if jj=|=|BB| | thenthen LLkk := := AAii; ; ii := := i i + 1+ 1
else if else if AAii < < BBjj then then LLkk := := AAii; ; ii := := i i + 1+ 1
elseelse LLkk := := BBjj; ; jj := := jj + 1+ 1
kk := := kk+1+1

returnreturn LL Takes Θ(|A|+|B|) time

§ 4.4 – Recursive Algorithms

