
(c)2001-2002, Michael P. Frank 1

Chap. 3

Chapter 3:
The Fundamentals: Algorithms,

the Integers, and Matrices

(c)2001-2002, Michael P. Frank 2

Chap. 3

§3.1: Algorithms

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 3

Chap. 3

Algorithms

•• The foundation of computer programming.The foundation of computer programming.
•• Most generally, an Most generally, an algorithmalgorithm just means a just means a definite definite

procedure for performing some sort of taskprocedure for performing some sort of task..
•• A computer A computer programprogram is simply a description of an is simply a description of an

algorithm in a language precise enough for a algorithm in a language precise enough for a
computer to understand, requiring only operations computer to understand, requiring only operations
the computer already knows how to do.the computer already knows how to do.

•• We say that a program We say that a program implementsimplements (or (or ““is an is an
implementation ofimplementation of””) its algorithm.) its algorithm.

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 4

Chap. 3

Programming Languages

•• Some common programming languages:Some common programming languages:
–– Newer:Newer: Java, C, C++, Visual Basic, JavaScript, Java, C, C++, Visual Basic, JavaScript,

Perl, Perl, TclTcl, Pascal, Pascal
–– Older:Older: Fortran, Cobol, Lisp, BasicFortran, Cobol, Lisp, Basic
–– Assembly languages, for lowAssembly languages, for low--level coding.level coding.

•• In this class we will use an informal, In this class we will use an informal,
PascalPascal--like like ““pseudopseudo--codecode”” language.language.

•• You should know at least 1 real language!You should know at least 1 real language!

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 5

Chap. 3

Algorithm Example (English)

•• Task: Task: Given a sequence {Given a sequence {aaii}=}=aa11,,……,,aann, ,
aaiiNN,, say what its largest element issay what its largest element is..

•• Set the value of a Set the value of a temporary variabletemporary variable vv
(largest element seen so far) to (largest element seen so far) to aa11’’s value.s value.

•• Look at the next element Look at the next element aaii in the sequence.in the sequence.
•• If If aaii>>vv, then re, then re--assign assign vv to the number to the number aaii..
•• Repeat previous 2 steps until there are no Repeat previous 2 steps until there are no

more elements in the sequence, & return more elements in the sequence, & return vv..

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 6

Chap. 3

Executing an Algorithm

•• When you start up a piece of software, we When you start up a piece of software, we
say the program or its algorithm are being say the program or its algorithm are being
run run or or executedexecuted by the computer.by the computer.

•• Given a description of an algorithm, you Given a description of an algorithm, you
can also execute it by hand, by working can also execute it by hand, by working
through all of its steps on paper.through all of its steps on paper.

•• Before ~WWII, Before ~WWII, ““computercomputer”” meant a meant a personperson
whose job was to run algorithms!whose job was to run algorithms!

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 7

Chap. 3

Executing the Max algorithm

•• Let {Let {aaii}=7,12,3,15,8. Find its maximum}=7,12,3,15,8. Find its maximum……
•• Set Set vv = = aa1 1 = 7.= 7.
•• Look at next element: Look at next element: aa22 = 12.= 12.
•• Is Is aa22>>vv? Yes, so change ? Yes, so change vv to 12.to 12.
•• Look at next element: Look at next element: aa22 = 3.= 3.
•• Is 3>12? No, leave Is 3>12? No, leave vv alonealone……..
•• Is 15>12? Yes, Is 15>12? Yes, vv=15=15……

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 8

Chap. 3

Algorithm Characteristics
Some important features of algorithms:Some important features of algorithms:
•• InputInput. Information or data that comes in.. Information or data that comes in.
•• OutputOutput. . Information or data that goes out.Information or data that goes out.
•• DefinitenessDefiniteness. . Precisely defined.Precisely defined.
•• CorrectnessCorrectness.. Outputs correctly relate to inputs.Outputs correctly relate to inputs.
•• FinitenessFiniteness. . WonWon’’t take forever to describe or run.t take forever to describe or run.
•• EffectivenessEffectiveness. . Individual steps are all doIndividual steps are all do--able.able.
•• GeneralityGenerality. . Works for many possible inputs.Works for many possible inputs.
•• EfficiencyEfficiency.. Takes little time & memory to run.Takes little time & memory to run.

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 9

Chap. 3

Our Pseudocode Language: §A2

procedureprocedure
namename((argumentargument: : typetype))

variablevariable :=:= expressionexpression
informal statementinformal statement
beginbegin statementsstatements endend
{{commentcomment}}
ifif conditioncondition then then

statementstatement [else [else
statementstatement]]

for for variablevariable :=:= initial initial
valuevalue to to final valuefinal value

statementstatement
whilewhile conditioncondition

statementstatement
procnameprocname((argumentsarguments))

Not defined in book:Not defined in book:
returnreturn expressionexpression

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 10

Chap. 3

procedure procname(arg: type)

•• Declares that the following text defines a Declares that the following text defines a
procedure named procedure named procnameprocname that takes that takes
inputs (inputs (argumentsarguments) named) named argarg which are which are
data objects of the type data objects of the type typetype..
–– Example:Example:

procedureprocedure maximummaximum((LL: list of integers): list of integers)
[statements defining [statements defining maximummaximum……]]

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 11

Chap. 3

variable := expression

•• An An assignment assignment statement evaluates the statement evaluates the
expression expression expressionexpression, then reassigns the , then reassigns the
variable variable variablevariable to the value that results.to the value that results.
–– Example:Example:

vv :=:= 33xx+7 (If +7 (If xx is 2, changes is 2, changes vv to 13.)to 13.)

•• In In pseudocodepseudocode (but not real code), the (but not real code), the
expressionexpression might be informal:might be informal:
–– xx :=:= the largest integer in the list the largest integer in the list LL

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 12

Chap. 3

Informal statement

•• Sometimes we may write a statement as an Sometimes we may write a statement as an
informal English imperative, if the meaning informal English imperative, if the meaning
is still clear and precise: is still clear and precise: ““swap swap xx and and yy””

•• Keep in mind that real programming Keep in mind that real programming
languages never allow this.languages never allow this.

•• When we ask for an algorithm to do soWhen we ask for an algorithm to do so--andand--
so, writing so, writing ““Do soDo so--andand--soso”” isnisn’’t enough!t enough!
–– Break down algorithm into detailed stepsBreak down algorithm into detailed steps..

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 13

Chap. 3

begin statements end

•• Groups a sequence of Groups a sequence of
statements together:statements together:
beginbegin

statement 1statement 1
statement 2statement 2
……
statement nstatement n

endend

•• Allows sequence to be Allows sequence to be
used like a single used like a single
statement.statement.

•• Might be used:Might be used:
–– After a After a procedureprocedure

declaration.declaration.
–– In an In an ifif statement after statement after

thenthen or or elseelse..
–– In the body of a In the body of a forfor or or

whilewhile loop.loop.

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 14

Chap. 3

{comment}

•• Not executedNot executed (does nothing).(does nothing).
•• NaturalNatural--language text explaining some language text explaining some

aspect of the procedure to human readers.aspect of the procedure to human readers.
•• Also called a Also called a remarkremark in some real in some real

programming languages.programming languages.
•• Example:Example:

–– {Note that {Note that vv is the largest integer seen so far.}is the largest integer seen so far.}

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 15

Chap. 3

if condition then statement

•• Evaluate the propositional expression Evaluate the propositional expression
conditioncondition..

•• If the resulting truth value is If the resulting truth value is truetrue, then , then
execute the statement execute the statement statementstatement; otherwise, ; otherwise,
just skip on ahead to the next statement.just skip on ahead to the next statement.

•• Variant: Variant: ifif condcond thenthen stmt1stmt1 elseelse stmt2stmt2
Like before, but Like before, but iffiff truth value is truth value is falsefalse, ,
executes executes stmt2stmt2..

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 16

Chap. 3

while condition statement

•• EvaluateEvaluate the propositional expression the propositional expression
conditioncondition..

•• If the resulting value is If the resulting value is truetrue, then execute , then execute
statementstatement..

•• Continue repeating the above two actions Continue repeating the above two actions
over and over until finally the over and over until finally the conditioncondition
evaluates to evaluates to falsefalse; then go on to the next ; then go on to the next
statement.statement.

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 17

Chap. 3

while condition statement

•• Also equivalent to infinite nested Also equivalent to infinite nested ififs, like so: s, like so:
if if conditioncondition

beginbegin
statement statement
if if conditioncondition

beginbegin
statement statement
……(continue infinite nested if(continue infinite nested if’’s)s)

endend
endend

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 18

Chap. 3

for var := initial to final stmt

•• InitialInitial is an integer expression.is an integer expression.
•• FinalFinal is another integer expression.is another integer expression.
•• Repeatedly execute Repeatedly execute stmtstmt, first with variable , first with variable

varvar :=:= initialinitial, then with , then with varvar :=:= initialinitial+1, +1,
then with then with varvar :=:= initialinitial+2, +2, etcetc., then finally ., then finally
with with varvar :=:= finalfinal..

•• What happens if What happens if stmtstmt changes the value that changes the value that
initialinitial or or finalfinal evaluates to?evaluates to?

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 19

Chap. 3

for var := initial to final stmt

•• ForFor can be exactly defined in terms of can be exactly defined in terms of
while,while, like so:like so: begin

var := initial
while var  final

begin
stmt
var := var + 1

end
end

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 20

Chap. 3

procedure(argument)

•• A A procedure callprocedure call statement invokes the statement invokes the
named named procedureprocedure, giving it as its input the , giving it as its input the
value of the value of the argumentargument expression.expression.

•• Various real programming languages refer Various real programming languages refer
to procedures as to procedures as functionsfunctions (since the (since the
procedure call notation works similarly to procedure call notation works similarly to
function application function application ff((xx)), or as)), or as subroutinessubroutines, ,
subprogramssubprograms, or , or methodsmethods..

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 21

Chap. 3

Max procedure in pseudocode

procedureprocedure maxmax((aa11, , aa22, , ……, , aann: integers): integers)
vv :=:= aa11 {largest element so far}{largest element so far}
forfor ii :=:= 2 2 toto n n {go thru rest of {go thru rest of elemselems}}

ifif aaii > > vv then then vv :=:= aaii {found bigger?}{found bigger?}
{at this point {at this point vv’’s value is the same ass value is the same as

the largest integer in the list}the largest integer in the list}
returnreturn vv

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 22

Chap. 3

Another example task

•• Problem of Problem of searching an ordered listsearching an ordered list..
–– Given a list Given a list L L of of nn elements that are sorted into elements that are sorted into

a definite order (a definite order (e.g.e.g., numeric, alphabetical),, numeric, alphabetical),
–– And given a particular element And given a particular element xx,,
–– Determine whether Determine whether xx appears in the list,appears in the list,
–– and if so, return its index (position) in the list.and if so, return its index (position) in the list.

•• Problem occurs often in many contexts.Problem occurs often in many contexts.
•• LetLet’’s find an s find an efficientefficient algorithm!algorithm!

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 23

Chap. 3

Search alg. #1: Linear Search

procedureprocedure linear searchlinear search
((xx: integer, : integer, aa11, , aa22, , ……, , aann: distinct integers): distinct integers)
ii :=:= 11
whilewhile ((ii  nn  xx  aaii))

ii :=:= ii + 1+ 1
ifif ii  n n then then locationlocation :=:= ii
elseelse locationlocation :=:= 00
return return location location {index or 0 if not found}{index or 0 if not found}

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 24

Chap. 3

Search alg. #2: Binary Search

•• Basic idea: On each step, look at the Basic idea: On each step, look at the middlemiddle
element of the remaining list to eliminate element of the remaining list to eliminate
half of it, and quickly zero in on the desired half of it, and quickly zero in on the desired
element.element.

<x >x<x <x

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 25

Chap. 3

Search alg. #2: Binary Search

procedureprocedure binary searchbinary search
((xx:integer:integer, a, a11, , aa22, , ……, , aann: distinct integers): distinct integers)
ii :=:= 1 {left endpoint of search interval}1 {left endpoint of search interval}
jj :=:= nn {right endpoint of search interval}{right endpoint of search interval}
whilewhile ii<<j j beginbegin {while interval has >1 item}{while interval has >1 item}

mm :=:= ((ii++jj)/2)/2 {midpoint}{midpoint}
ifif xx>>aamm thenthen i i :=:= mm+1 +1 else else j j :=:= mm

endend
ifif xx = = aaii thenthen locationlocation :=:= ii elseelse locationlocation :=:= 00
returnreturn locationlocation

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 26

Chap. 3

Sorting alg. : Bubble Sort

procedureprocedure bubblesortbubblesort((aa11, , aa22, , ……, , aann))

forfor ii :=:= 1 1 toto nn--11
forfor jj :=:= 1 to 1 to nn--ii

ifif aajj>>aaj+j+11 thenthen interchange interchange aajj and and aaj+j+11

{{aa11, , aa22, , ……, , aann is in increasing order}is in increasing order}

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 27

Chap. 3

Sorting alg. : Insertion Sort

procedureprocedure insertionsortinsertionsort((aa11, , aa22, , ……, , aann))
forfor jj :=:= 2 2 toto nn
beginbegin

ii :=:= 1 1
whilewhile aajj > > aaii

ii :=:= ii+1+1
mm :=:= aajj

forfor kk :=:= 0 to 0 to jj--ii--1 1
aajj--kk :=:= aajj--kk--11

aaii :=:= mm
endend {{aa11, , aa22, , ……, , aann are sorted}are sorted}

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 28

Chap. 3

Greedy Change-Making Alg.

procedureprocedure changechange((cc11, , cc22, , ……, , ccrr : : cc11> > cc22> > ……> > ccrr；；nn))
forfor ii :=:= 1 1 toto rr

whilewhile n n  ccii

beginbegin
add a coin with value add a coin with value ccii to the changeto the change
nn :=:= nn-- ccii

endend

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 29

Chap. 3

Practice exercises

•• 3.1.3: 3.1.3: Devise an algorithm that finds the Devise an algorithm that finds the
sum of all the integers in a listsum of all the integers in a list. [2 min]. [2 min]

•• procedureprocedure sumsum((aa11, , aa22, , ……, , aann: integers): integers)
ss :=:= 0 {sum of 0 {sum of elemselems so far}so far}
forfor ii :=:= 1 1 toto n n {go thru all {go thru all elemselems}}

ss :=:= ss + + aaii {add current item}{add current item}
{at this point {at this point ss is the sum of all items}is the sum of all items}
returnreturn s s

§ 3.1 – Algorithms

(c)2001-2002, Michael P. Frank 30

Chap. 3

§3.2: The Growth of Functions

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 31

Chap. 3

Orders of Growth

•• For functions over numbers, we often need For functions over numbers, we often need
to know a rough measure of to know a rough measure of how fast a how fast a
function growsfunction grows..

•• If If ff((xx) is) is faster growing faster growing than than gg((xx)), then , then ff((xx))
always eventually becomes larger than always eventually becomes larger than gg((xx))
in the limitin the limit (for large enough values of (for large enough values of xx).).

•• Useful in engineering for showing that one Useful in engineering for showing that one
design design scales scales better or worse than another.better or worse than another.

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 32

Chap. 3

Orders of Growth - Motivation

•• Suppose you are designing a web site to Suppose you are designing a web site to
process user data (process user data (e.g.e.g., financial records)., financial records).

•• Suppose database program A takes Suppose database program A takes
ffAA((nn)=30)=30n+n+88 microseconds to process any microseconds to process any nn
records, while program B takes records, while program B takes ffBB((nn)=)=nn22+1+1
microseconds to process the microseconds to process the nn records.records.

•• Which program do you chooseWhich program do you choose, knowing , knowing
youyou’’ll want to support millions of users?ll want to support millions of users?

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 33

Chap. 3

Visualizing Orders of Growth

•• On a graph, asOn a graph, as
you go to theyou go to the
right, a fasterright, a faster
growinggrowing
functionfunction
eventuallyeventually
becomesbecomes
larger... larger...

fA(n)=30n+8

Increasing n 

fB(n)=n2+1
V

al
ue

 o
f f

un
ct

io
n


§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 34

Chap. 3

Concept of order of growth

•• We say We say ffAA((nn)=30)=30n+n+88 is is order norder n, or O(, or O(nn)). .
It is, at most, roughly It is, at most, roughly proportionalproportional to to nn..

•• ffBB((nn)=)=nn22+1 is +1 is order norder n22, or O(, or O(nn22)). It is . It is
roughly proportional to roughly proportional to nn22..

•• Any O(Any O(nn22) function is faster) function is faster--growing than growing than
any O(any O(nn) function.) function.

•• For large numbers of user records, the For large numbers of user records, the
O(O(nn22) function will always take more time.) function will always take more time.

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 35

Chap. 3

Definition: O(g), at most order g

Let Let gg be any function be any function RRRR..
•• Define Define ““at most order gat most order g””, written , written O(O(gg), to), to

be: be: {{ff::RRR | R | cc,,kk: : xx>>kk:: ff((xx))  cgcg((xx)})}..
–– ““Beyond some point Beyond some point kk, function , function ff is at most a is at most a

constant constant cc times times gg ((i.e., i.e., proportional to proportional to gg).).””
•• ““ff is is at most order gat most order g””, or , or ““ff is O(is O(gg))””,, or or

““ff=O(=O(gg))”” all just mean that all just mean that ffO(O(gg).).
•• Sometimes the phrase Sometimes the phrase ““at mostat most”” is omitted.is omitted.

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 36

Chap. 3

Points about the definition

•• Note that Note that ff is O(is O(gg) so long as) so long as anyany values of values of
cc and and kk exist that satisfy the definition.exist that satisfy the definition.

•• But: The particular But: The particular cc, , kk, values that make , values that make
the statement true are the statement true are notnot uniqueunique: : Any Any
larger value of larger value of cc and/or and/or k k will also work.will also work.

•• You are You are notnot required to find the smallest required to find the smallest cc
and and kk values that work. (Indeed, in some values that work. (Indeed, in some
cases, there may be no smallest values!)cases, there may be no smallest values!)
However, you should prove that the values you choose do work.

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 37

Chap. 3

“Big-O” Proof Examples

•• Show that 30Show that 30nn+8 is O(+8 is O(nn))..
–– Show Show cc, , kk: : nn>>kk:: 3030nn+8 +8  cncn..

•• Show that Show that nn22+1 is O(+1 is O(nn22))..
–– Show Show cc, , kk: : nn>>kk: : nn22+1+1  cncn22..

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 38

Chap. 3

•• Note 30Note 30nn+8 isn+8 isn’’tt
less than less than nn
anywhere anywhere ((nn>0).>0).

•• It isnIt isn’’t event even
less than 31less than 31nn
everywhereeverywhere..

•• But it But it isis less thanless than
3131nn everywhere toeverywhere to
the right of the right of nn=8=8. .

n>k=8 

Big-O example, graphically

Increasing n 

V
al

ue
 o

f f
un

ct
io

n


n

30n+8
cn =
31n

30n+8
O(n)

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 39

Chap. 3

Useful Facts about Big O

•• Big O, as a relation, is transitive: Big O, as a relation, is transitive:
ffO(O(gg))  ggO(O(hh))  ffO(O(hh))

•• O with constant multiples, roots, and logs...O with constant multiples, roots, and logs...
 f f (in (in (1)) & constants(1)) & constants aa,,bbRR, with , with bb0,0,
afaf, , f f 11--bb, and (, and (loglogbb ff))aa are all O(are all O(ff).).

•• Sums of functions:Sums of functions:
If If ggO(O(ff) and) and hhO(O(ff), then), then gg++hhO(O(ff))..

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 40

Chap. 3

More Big-O facts

•• cc>0, >0, O(O(cfcf))==O(O(f+cf+c)=O()=O(ffc)c)==O(O(ff))
•• ff11O(O(gg11))  ff22O(O(gg22)) 

–– ff1 1 ff2 2 O(O(gg11gg22))
–– ff11++ff2 2 O(O(gg11++gg22))

= O= O(max((max(gg11,,gg22))))
= O(= O(gg11) if) if gg22O(O(gg11)) (Very useful!)(Very useful!)

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 41

Chap. 3

Orders of Growth (§3.2) - So Far

•• For any For any gg::RRRR, , ““at most order gat most order g””,,
O(O(gg))  {{ff::RRR | R | cc,,kk xx>>k |fk |f((xx)|)|  ||cgcg((xx)|}.)|}.
–– Often, one deals only with positive functions Often, one deals only with positive functions

and can ignore absolute value symbols.and can ignore absolute value symbols.

•• ““ffO(O(gg))”” often written often written ““ff is O(is O(gg))””
or or ““ff=O(=O(gg))””..
–– The latter form is an instance of a more general The latter form is an instance of a more general

convention...convention...

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 42

Chap. 3

Order-of-Growth Expressions

•• ““O(O(ff))”” when used as a term in an arithmetic when used as a term in an arithmetic
expression means: expression means: ““some function some function ff such such
that that ffO(O(ff))””..

•• E.g.E.g.: : ““xx22+O(+O(xx))”” means means ““xx22 plus some plus some
function that is O(function that is O(xx))””..

•• Formally, you can think of any such Formally, you can think of any such
expression as denoting a set of functions:expression as denoting a set of functions:
““xx22+O(+O(xx))”” :: {{gg | | ffO(O(xx):): gg((xx)=)= xx22++ff((xx)})}

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 43

Chap. 3

Order of Growth Equations

•• Suppose Suppose EE11 and and EE22 are orderare order--ofof--growth growth
expressions corresponding to the sets of expressions corresponding to the sets of
functions functions SS and and TT, respectively. , respectively.

•• Then the Then the ““equationequation”” EE11==EE22 really meansreally means
ffSS, , ggT T : : ff==gg

or simply or simply SST.T.
•• Example: Example: xx22 + O(+ O(xx) = O() = O(xx22) means) means
ffO(O(xx):): ggO(O(xx22):): xx22++ff((xx)=)=gg((xx))

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 44

Chap. 3

Useful Facts about Big O
••  f,gf,g & constants& constants aa,,bbRR, with , with bb0,0,

–– afaf = O(= O(ff); (); (ee..g. g. 33xx2 2 = O(= O(xx22))))
–– f+f+O(O(ff)) = = O(O(ff); (); (ee..g. xg. x22+x = +x = O(O(xx22))))

•• Also, if Also, if ff==((xx) () (at leastat least order 1), then:order 1), then:
–– |f||f|11--b b = O(= O(ff); (); (e.g.e.g. xx1 1 = O(= O(xx))))
–– ((loglogbb ||f|f|))aa = O(= O(ff). (). (e.g.e.g. log log xx = O(= O(xx))))
–– gg==O(O(fgfg)) ((ee..g.g. x = x = O(O(xx log log xx))))
–– fgfg  O(O(gg)) ((e.g.e.g. xx log log xx  O(O(xx))))
–– a=a=O(O(ff) () (e.g.e.g. 3 = O(3 = O(xx))))

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 45

Chap. 3

Definition: (g), exactly order g

•• If If ffO(O(gg) and) and ggO(O(ff) then we say) then we say ““g and f g and f
are of are of the same orderthe same order”” or or ““f is (exactly) f is (exactly)
order gorder g”” and write and write ff((gg).).

•• Another equivalent definition:Another equivalent definition:
((gg))  {{ff::RRR R | |

cc11cc22kk xx>>kk: |: |cc11gg((xx)|)|||ff((xx)|)|||cc22gg((xx)| })| }
•• ““Everywhere beyond some point Everywhere beyond some point kk, , ff((xx)) lies lies

in between two multiples of in between two multiples of gg((xx).).””

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 46

Chap. 3

Rules for 

•• Mostly like rules for O(), except:Mostly like rules for O(), except:
••  f,gf,g>0 & constants>0 & constants aa,,bbRR, with , with bb>0,>0,

afaf  ((ff)),, but but  Same as with O.Same as with O.
f f  ((fgfg) unless) unless g=g=(1) (1)  Unlike OUnlike O..
||f| f| 11--bb  ((ff)), and , and  Unlike with OUnlike with O..
((loglogbb ||f|f|))cc  ((ff).).  Unlike with OUnlike with O..

•• The functions in the latter two cases we say The functions in the latter two cases we say
are are strictly of lower orderstrictly of lower order than than ((ff).).

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 47

Chap. 3

 example

•• Determine whether:Determine whether:
•• Solution:Solution:

)(2
?

1
ni

n

i











§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 48

Chap. 3

Other Order-of-Growth Relations

•• ((gg) = {) = {ff | | ggO(O(ff)})}
““The functions that are The functions that are at least orderat least order gg..””

•• o(o(gg) = {) = {ff | | cc>0 >0 kk x>kx>k : |: |ff((xx)|)| << ||cgcg((xx)|})|}
““The functions that are The functions that are strictly lower order strictly lower order
than gthan g..”” o(o(gg))  O(O(gg))  ((gg).).

•• ((gg) =) = {{ff | | cc>0 >0 kk x>kx>k : |: |cgcg((xx)|)| << ||ff((xx)|})|}
““The functions that are The functions that are strictly higher order strictly higher order
than gthan g..”” ((gg))  ((gg))  ((gg).).

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 49

Chap. 3

•• Subset relations between orderSubset relations between order--ofof--growth growth
sets.sets.

Relations Between the Relations

RR
(f)O(f)

(f) (f)o(f)
• f

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 50

Chap. 3

Why o(f)O(x)(x)

•• A function that is O(A function that is O(xx), but neither o(), but neither o(xx) nor) nor
((xx):):

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 51

Chap. 3

Strict Ordering of Functions

•• Temporarily letTemporarily let’’s write s write ffgg to mean to mean ffo(o(gg),),
ff~~gg to mean to mean ff((gg))

•• Note that Note that

•• Let Let kk>1. Then the following are true:>1. Then the following are true:
1 1  log log log log nn  log log nn ~ ~ loglogkk nn  loglogkk nn
 nn1/1/kk  n n  n n log log nn  nnkk  kknn  nn! !  nnnn ……

.0
)(
)(lim 

 xg
xfgf

x


§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 52

Chap. 3

Review: Growth of Functions (§3.2)

Definitions of orderDefinitions of order--ofof--growth sets, growth sets, gg::RRRR
•• O(O(gg))  {{ff ||  cc>0 >0 kk xx>>k |fk |f((xx)| < |)| < |cgcg((xx)|})|}
•• o(o(gg))  {{ff | | cc>0 >0 kk x>kx>k ||ff((xx)| < |)| < |cgcg((xx)|})|}
•• ((gg))  {{ff | | ggO(O(ff)})}
•• ((gg))  {{ff | | ggo(o(ff)})}
•• ((gg))  O(O(gg))  ((gg))

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank 53

Chap. 3

§3.3: Complexity of Algorithms

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 54

Chap. 3

What is complexity?

•• The word The word complexitycomplexity has a variety of technical has a variety of technical
meanings in different fields.meanings in different fields.

•• There is a field of There is a field of complex systemscomplex systems, which studies , which studies
complicated, difficultcomplicated, difficult--toto--analyze analyze nonnon--linearlinear and and
chaoticchaotic natural & artificial systems.natural & artificial systems.

•• Another concept: Another concept: Informational complexityInformational complexity: the : the
amount of amount of informationinformation needed to completely needed to completely
describe an object. (An active research field.)describe an object. (An active research field.)

•• We will study We will study algorithmic complexityalgorithmic complexity..

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 55

Chap. 3

Algorithmic Complexity

•• The The algorithmic complexityalgorithmic complexity of a of a
computation is some measure of computation is some measure of how how
difficultdifficult it is to perform the computation.it is to perform the computation.

•• Measures some aspect of Measures some aspect of costcost of of
computation (in a general sense of cost).computation (in a general sense of cost).

•• Common complexity measures:Common complexity measures:
–– ““TimeTime”” complexity: # of ops or steps requiredcomplexity: # of ops or steps required
–– ““SpaceSpace”” complexity: # of memory bits complexity: # of memory bits reqreq’’dd

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 56

Chap. 3

An aside...

•• Another, increasingly important measure of Another, increasingly important measure of
complexity for computing is complexity for computing is energy energy
complexitycomplexity -- How much total energy is used How much total energy is used
in performing the computation.in performing the computation.

•• Motivations: Battery life, electricity cost...Motivations: Battery life, electricity cost...
•• I develop I develop reversiblereversible circuits & algorithms circuits & algorithms

that recycle energy, trading off energy that recycle energy, trading off energy
complexity for complexity for spacetimespacetime complexity.complexity.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 57

Chap. 3

Complexity Depends on Input

•• Most algorithms have different complexities Most algorithms have different complexities
for inputs of different sizes. (for inputs of different sizes. (E.g.E.g. searching searching
a long list takes more time than searching a a long list takes more time than searching a
short one.)short one.)

•• Therefore, complexity is usually expressed Therefore, complexity is usually expressed
as a as a functionfunction of input length.of input length.

•• This function usually gives the complexity This function usually gives the complexity
for the for the worstworst--casecase input of any given length.input of any given length.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 58

Chap. 3

Complexity & Orders of Growth

•• Suppose algorithm A has Suppose algorithm A has worstworst--case time case time
complexitycomplexity (w.c.t.c., or just (w.c.t.c., or just timetime)) ff((nn)) for for
inputs of length inputs of length nn, while algorithm B (for , while algorithm B (for
the same task) takes time the same task) takes time gg((nn).).

•• Suppose that Suppose that ff((gg), also written .), also written .
•• Which algorithm will be Which algorithm will be fastestfastest on all on all

sufficientlysufficiently--large, worstlarge, worst--case inputs?case inputs?

gf 

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 59

Chap. 3

Example 1: Max algorithm

•• Problem: Find the Problem: Find the simplest formsimplest form of the of the
exactexact orderorder of growth (of growth () of the) of the worstworst--casecase
time complexity (w.c.t.c.) of the time complexity (w.c.t.c.) of the maxmax
algorithm, assuming that each line of code algorithm, assuming that each line of code
takes some constant time every time it is takes some constant time every time it is
executed (with possibly different times for executed (with possibly different times for
different lines of code).different lines of code).

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 60

Chap. 3

Complexity analysis of max

procedureprocedure maxmax((aa11, , aa22, , ……, , aann: integers): integers)
vv :=:= aa11 tt11

forfor ii :=:= 2 2 toto nn tt22

ifif aaii > > vv then then vv :=:= aaii tt33

returnreturn vv tt44

WhatWhat’’s an expression for the s an expression for the exactexact total total
worstworst--case time? (Not its order of growth.)case time? (Not its order of growth.)

Times for
each

execution
of each

line.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 61

Chap. 3

Complexity analysis, cont.

procedureprocedure maxmax((aa11, , aa22, , ……, , aann: integers): integers)
vv :=:= aa11 tt11

forfor ii :=:= 2 2 toto nn tt22

ifif aaii > > vv then then vv :=:= aaii tt33

returnreturn vv tt44

w.c.t.c.: w.c.t.c.:

Times for
each

execution
of each

line.

4
2

321)()(ttttnt
n

i








 



§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 62

Chap. 3

Complexity analysis, cont.

Now, what is the simplest form of the exact Now, what is the simplest form of the exact
(() order of growth of) order of growth of tt((nn)?)?

)()()1()1()()1(

)1()1()1()1()1()1(

)()(

2

4
2

321

nnn

n

ttttnt

n

i

n

i































§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 63

Chap. 3

Example 2: Linear Search

procedureprocedure linear search linear search ((xx: integer, : integer, aa11, , aa22, ,
……, , aann: distinct integers): distinct integers)
ii :=:= 11 tt11
whilewhile ((ii  nn  xx  aaii)) tt22

ii :=:= ii + 1+ 1 tt33
ifif ii  n n then then locationlocation :=:= ii tt44
elseelse locationlocation :=:= 00 tt55
return return locationlocation tt66

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 64

Chap. 3

Linear search analysis

•• Worst case time complexity order:Worst case time complexity order:

•• Best case:Best case:

•• Average case, if item is present:Average case, if item is present:

)()()(654
1

321 nttttttnt
n

i









 



)1()(6421  ttttnt

)()()(654

2/

1
321 nttttttnt

n

i









 



§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 65

Chap. 3

Review §3.3: Complexity

•• Algorithmic complexity = Algorithmic complexity = costcost of computation.of computation.
•• Focus on Focus on timetime complexity (space & energy are complexity (space & energy are

also important.)also important.)
•• Characterize complexity as a function of input Characterize complexity as a function of input

size: Worstsize: Worst--case, bestcase, best--case, averagecase, average--case.case.
•• Use orders of growth notation to concisely Use orders of growth notation to concisely

summarize growth properties of complexity fns.summarize growth properties of complexity fns.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 66

Chap. 3

Example 3: Binary Search

procedureprocedure binary search binary search ((xx:integer:integer, a, a11, , aa22, , ……, , aann: :
distinct integers)distinct integers)
ii :=:= 1 1
jj :=:= nn
whilewhile ii<<j j beginbegin

mm :=:= ((ii++jj)/2)/2
ifif xx>>aamm thenthen i i :=:= mm+1 +1 else else j j :=:= mm

endend
ifif xx = = aaii thenthen locationlocation :=:= ii elseelse locationlocation :=:= 00
returnreturn locationlocation

(1)

(1)

(1)

Key question:
How many loop iterations?

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 67

Chap. 3

Binary search analysis

•• Suppose Suppose nn=2=2kk..
•• Original range from Original range from ii=1 to =1 to jj==nn contains contains nn elemselems..
•• Each iteration: Size Each iteration: Size jjii+1 of range is cut in half.+1 of range is cut in half.
•• Loop terminates when size of range is 1=2Loop terminates when size of range is 1=200 ((ii==jj).).
•• Therefore, number of iterations is Therefore, number of iterations is k k = log= log22nn

= = (log(log22 nn)=)= (log (log nn))
•• Even for Even for nn22kk (not an integral power of 2),(not an integral power of 2),

time complexity is still time complexity is still (log(log22 nn) =) = (log (log nn).).

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 68

Chap. 3

Names for some orders of growth

•• (1)(1) ConstantConstant
•• ((loglogcc nn)) Logarithmic (same order Logarithmic (same order cc))
•• ((loglogcc nn)) PolylogarithmicPolylogarithmic
•• ((nn)) LinearLinear
•• ((nncc)) PolynomialPolynomial
•• ((ccnn),), cc>1>1 ExponentialExponential
•• ((nn!)!) FactorialFactorial

(With c
a constant.)

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 69

Chap. 3

Problem Complexity

•• The complexity of a computational The complexity of a computational problemproblem
or or tasktask is (the order of growth of) the is (the order of growth of) the
complexity of complexity of the algorithm with the lowest the algorithm with the lowest
order of growth of complexityorder of growth of complexity for solving for solving
that problem or performing that task.that problem or performing that task.

•• E.g. E.g. the problem of searching an ordered the problem of searching an ordered
list has list has at most logarithmicat most logarithmic time time
complexity. (Complexity is O(log complexity. (Complexity is O(log nn).)).)

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 70

Chap. 3

Tractable vs. intractable

•• A problem or algorithm with A problem or algorithm with at most polynomial at most polynomial
time complexitytime complexity is considered is considered tractabletractable (or (or
feasiblefeasible).). PP is the set of all tractable problems.is the set of all tractable problems.

•• A problem or algorithm that has A problem or algorithm that has more than more than
polynomial complexitypolynomial complexity is considered is considered intractableintractable
(or (or infeasibleinfeasible))..

•• Note that Note that nn1,000,0001,000,000 is is technicallytechnically tractable, but tractable, but
really impossible. really impossible. nnloglog log log log log nn is is technicallytechnically
intractable, but easy. Such cases are rare though.intractable, but easy. Such cases are rare though.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 71

Chap. 3

Unsolvable problems

•• Turing discovered in the 1930Turing discovered in the 1930’’s that there s that there
are problems unsolvable by are problems unsolvable by anyany algorithm.algorithm.
–– Or equivalently, there are Or equivalently, there are undecidableundecidable yes/no yes/no

questions, and questions, and uncomputableuncomputable functions.functions.

•• Example: the Example: the halting problemhalting problem..
–– Given an arbitrary algorithm and its input, will Given an arbitrary algorithm and its input, will

that algorithm eventually halt, or will it that algorithm eventually halt, or will it
continue forever in an continue forever in an ““infinite loopinfinite loop??””

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 72

Chap. 3

P vs. NP

•• NPNP is the set of problems for which there is the set of problems for which there
exists a tractable algorithmexists a tractable algorithm for for checking checking
solutionssolutions to see if they are correctto see if they are correct..

•• We know We know PPNPNP, but the most famous , but the most famous
unproven conjecture in computer science is unproven conjecture in computer science is
that this inclusion is that this inclusion is properproper ((i.e.i.e., that , that
PPNPNP rather than rather than PP==NPNP).).

•• Whoever first proves it will be famous!Whoever first proves it will be famous!

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 73

Chap. 3

Computer Time Examples

Assume time Assume time
= 1 ns (10= 1 ns (1099

second) per second) per
op, problem op, problem
size = size = nn bits, bits,
#ops a #ops a
function of function of nn
as shown.as shown.

#ops(n) n=10 n=106

log2 n 3.3 ns 19.9 ns
n 10 ns 1 ms
n log2 n 33 ns 19.9 ms
n2 100 ns 16 m 40 s
2n 1.024 s 10301,004.5

Gyr
n! 3.63 ms Ouch!

(125 kB)(1.25 bytes)

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 74

Chap. 3

Things to Know

•• Definitions of algorithmic complexity, time Definitions of algorithmic complexity, time
complexity, worstcomplexity, worst--case complexity; names case complexity; names
of orders of growth of complexity.of orders of growth of complexity.

•• How to analyze the worst case, best case, or How to analyze the worst case, best case, or
average case order of growth of time average case order of growth of time
complexity for simple algorithms.complexity for simple algorithms.

§ 3.3 – Complexity of Algorithms

(c)2001-2002, Michael P. Frank 75

Chap. 3

§3.4: The Integers and Division

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 76

Chap. 3

The Integers and Division

•• Of course you already know what the Of course you already know what the
integers are, and what division isintegers are, and what division is……

•• But:But: There are some specific notations, There are some specific notations,
terminology, and theorems associated with terminology, and theorems associated with
these concepts which you may not know.these concepts which you may not know.

•• These form the basics of These form the basics of number theorynumber theory..
–– Vital in many important algorithms today (hash Vital in many important algorithms today (hash

functions, cryptography, digital signatures).functions, cryptography, digital signatures).

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 77

Chap. 3

Divides, Factor, Multiple

•• Let Let aa,,bbZZ with with aa0.0.
•• aa||bb  ““aa dividesdivides bb”” :: ““ccZZ:: b=acb=ac””

““There is an integer There is an integer cc such that such that cc times times a a
equals equals b.b.””
–– Example: 3Example: 312 12  TrueTrue, but 3, but 37 7  FalseFalse..

•• IffIff aa divides divides bb, then we say , then we say aa is a is a factorfactor or a or a
divisordivisor of of bb, and , and bb is a is a multiplemultiple of of aa..

•• ““bb is evenis even”” ::≡≡ 2|2|bb. Is 0 even? Is . Is 0 even? Is −−4?4?

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 78

Chap. 3

Facts re: the Divides Relation

•• aa,,bb,,c c  ZZ::
1. 1. aa|0|0
2. (2. (aa||bb  aa||cc))  aa | (| (bb + + cc))
3. 3. aa||bb  aa||bcbc
4. (4. (aa||bb  bb||cc))  aa||cc

•• ProofProof of (2): of (2): aa||bb means there is an means there is an ss such that such that
bb==asas, and , and aa||cc means that there is a means that there is a tt such that such that
cc==atat, so , so bb++cc = = asas++atat = = aa((ss++tt), so), so aa|(|(bb++cc) also.) also.■■

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 79

Chap. 3

More Detailed Version of Proof

•• Show Show aa,,bb,,c c  ZZ:: ((aa||bb  aa||cc))  aa | (| (bb + + cc))..
•• Let Let aa, , bb, , cc be any integers such that be any integers such that aa||bb and and

aa||cc, and show that , and show that aa | (| (bb + + cc))..
•• By By defndefn. of |, we know . of |, we know ss: : b=asb=as, and , and
tt: : c=atc=at. Let . Let ss, , tt, be such integers., be such integers.

•• Then Then bb++c = asc = as ++ atat = = aa((ss++tt)), so , so
uu: : bb++cc==auau, namely , namely uu==ss++t. t. Thus Thus aa|(|(bb++cc).).

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 80

Chap. 3

The Division “Algorithm”

•• Really just a Really just a theoremtheorem, not an algorithm, not an algorithm……
–– The name is used here for historical reasons.The name is used here for historical reasons.

•• For any integer For any integer dividenddividend aa and and divisordivisor
dd≠≠00, there is a unique integer , there is a unique integer quotientquotient qq
andand remainder rremainder rNN  a a = = dqdq + + rr and 0 and 0  r r < <
||d|d|. .

•• aa,,ddZZ, , dd>0:>0: !!qq,,rrZZ: 0: 0rr<|<|d|d|, , a=a=dqdq++rr..
•• We can find We can find qq and and rr by: by: qq==aadd, , rr==aaqdqd..

(such that)

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 81

Chap. 3

The mod operator

•• An integer An integer ““division remainderdivision remainder”” operator.operator.
•• Let Let aa,,ddZZ with with d>d>1. Then 1. Then aa modmod dd

denotes the denotes the remainder remainder rr from the division from the division
““algorithmalgorithm”” with dividend with dividend aa and divisor and divisor dd; ;
i.e.i.e. the remainder when the remainder when aa is divided by is divided by dd. .
(Using (Using e.g.e.g. long division.)long division.)

•• We can compute (We can compute (aa modmod dd) by:) by: a a  dd··aa//dd..
•• In C programming language, In C programming language, ““%%”” = mod.= mod.

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 82

Chap. 3

Modular Congruence

•• Let Let ZZ++={={nnZ Z | | nn>0}, the positive integers.>0}, the positive integers.
•• Let Let aa,,bbZZ, , mmZZ++..
•• Then Then aa is congruent tois congruent to b modulo mb modulo m, written , written

““aabb (mod (mod mm))””,, iffiff m m | | aabb ..
•• Also equivalent to: Also equivalent to: ((aabb) mod) mod m m = 0= 0..
•• (Note: this is a different use of (Note: this is a different use of ““”” than the than the

meaning meaning ““is defined asis defined as”” II’’ve used before.)ve used before.)

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 83

Chap. 3

Spiral Visualization of mod

≡ 3
(mod 5)

≡ 2
(mod 5)

≡ 1
(mod 5)

≡ 0
(mod 5)

≡ 4
(mod 5) 0

1
23

4

5

6

78

9

10

11

1213

14

15

16

1718

19

20

21

22

Example shown:
modulo-5
arithmetic

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 84

Chap. 3

Useful Congruence Theorems

•• Let Let aa,,bbZZ, , mmZZ++. Then:. Then:
aabb (mod (mod mm))  kkZZ aa==bb++kmkm..

•• Let Let aa,,bb,,cc,,ddZZ, , mmZZ++. Then if . Then if
aabb (mod (mod mm) and) and ccdd (mod (mod mm), then:), then:
▪▪ a+ca+c  b+db+d (mod (mod mm)), and, and
▪▪ ac ac  bdbd (mod (mod mm))

 Hash FunctionHash Function：： hh((kk)=)=kk modmod mm

§ 3.4 – The Integers and Division

(c)2001-2002, Michael P. Frank 85

Chap. 3

§3.5: Primes and
Greatest Common Divisors

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 86

Chap. 3

Prime Numbers

•• An integer An integer pp>1 is >1 is primeprime iffiff it is not the it is not the
product of any two integers greater than 1product of any two integers greater than 1::

pp>1 >1  aa,,bbN:N: aa>1, >1, bb>1, >1, abab==pp..
•• The only positive factors of a prime The only positive factors of a prime pp are 1 are 1

and and pp itselfitself. Some primes: 2,3,5,7,11,13.... Some primes: 2,3,5,7,11,13...
•• NonNon--prime integers greater than 1 are called prime integers greater than 1 are called

compositecomposite, because they can be , because they can be composedcomposed
by multiplying two integers greater than 1.by multiplying two integers greater than 1.

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 87

Chap. 3

Fundamental Theorem of Arithmetic

•• Every positive integer has a unique Every positive integer has a unique
representation as the product of a nonrepresentation as the product of a non--
decreasing series of zero or more primes.decreasing series of zero or more primes.
–– 1 = (product of empty series) = 11 = (product of empty series) = 1
–– 2 = 2 (product of series with one element 2)2 = 2 (product of series with one element 2)
–– 4 = 24 = 2··2 (product of series 2,2)2 (product of series 2,2)
–– 2000 = 22000 = 2··22··22··22··55··55··5; 2001 = 35; 2001 = 3··2323··29;29;

2002 = 22002 = 2··77··1111··13; 2003 = 200313; 2003 = 2003

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 88

Chap. 3

An Application of Primes
•• When you visit a secure web site (https:When you visit a secure web site (https:……

address, indicated by padlock icon in IE, key icon address, indicated by padlock icon in IE, key icon
in Netscape), the browser and web site may be in Netscape), the browser and web site may be
using a technology called using a technology called RSA encryptionRSA encryption..

•• This This publicpublic--key cryptographykey cryptography scheme involves scheme involves
exchanging exchanging public keyspublic keys containing the product containing the product pqpq
of two random of two random large primes large primes pp and and qq (a (a private private
keykey) which must be kept secret by a given party.) which must be kept secret by a given party.

•• So, the security of your daySo, the security of your day--toto--day web day web
transactions depends critically on the fact that all transactions depends critically on the fact that all
known factoring algorithms are intractable!known factoring algorithms are intractable!
–– Note:Note: There There isis a tractable a tractable quantumquantum algorithm for factoring; so if algorithm for factoring; so if

we can ever build big quantum computers, RSA will be insecure.we can ever build big quantum computers, RSA will be insecure.

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 89

Chap. 3

Greatest Common Divisor

•• The The greatest common divisorgreatest common divisor gcd(gcd(aa,,bb)) of integers of integers
aa,,bb (not both 0) is the largest (most positive) (not both 0) is the largest (most positive)
integer integer dd that is a divisor both of that is a divisor both of aa and of and of bb..
dd = = gcd(gcd(aa,,bb) =) = max(max(dd: : dd||a a  dd||bb)) 

dd||a a  dd||bb  eeZZ,, ((ee||aa  ee||bb)) →→ d d ≥≥ ee

•• Example: gcd(24,36)=?Example: gcd(24,36)=?
Positive common divisors: 1,2,3,4,6,12Positive common divisors: 1,2,3,4,6,12……
Greatest is 12.Greatest is 12.

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 90

Chap. 3

GCD shortcut

•• If the prime factorizations are written asIf the prime factorizations are written as
and and ,,

then the GCD is given by:then the GCD is given by:

•• Example:Example:
–– aa=84=2=84=2··22··33··7 = 27 = 222··3311··7711

–– bb=96=2=96=2··22··22··22··22··3 = 23 = 255··3311··7700

–– gcd(84,96) =gcd(84,96) =

na
n

aa pppa 21
21 nb

n
bb pppb 21
21

.),gcd(),min(),min(
2

),min(
1

2211 nn ba
n

baba pppba 

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 91

Chap. 3

Relative Primality

•• Integers Integers aa and and bb are called are called relatively primerelatively prime
or or coprimecoprime iffiff their their gcdgcd = 1= 1..
–– Example: Neither 21 and 10 are prime, but they Example: Neither 21 and 10 are prime, but they

are are coprimecoprime. 21=3. 21=3··7 and 10=27 and 10=2··5, so they have 5, so they have
no common factors > 1, so their no common factors > 1, so their gcdgcd = 1.= 1.

•• A A setset of integers {of integers {aa11,,aa22,,……} is } is ((pairwisepairwise))
relatively primerelatively prime if all pairs if all pairs aaii, , aajj, , iijj, are , are
relatively prime.relatively prime.

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 92

Chap. 3

Least Common Multiple

•• lcm(lcm(aa,,bb)) of positive integers of positive integers aa, , bb, , is the smallest is the smallest
positive integer that is a multiple both of positive integer that is a multiple both of aa and of and of
bb. . E.g.E.g. lcm(6,10)=30lcm(6,10)=30

mm = lcm(= lcm(aa,,bb) = min() = min(mm: : aa||mm  bb||mm)) 
aa||mm  bb||mm  nnZZ: (: (aa||nn  bb||nn)) →→ ((m m ≤≤ nn))

•• If the prime factorizations are written asIf the prime factorizations are written as
and , and ,

then the LCM is given bythen the LCM is given by
na

n
aa pppa 21
21 nb

n
bb pppb 21
21

.),(lcm),max(),max(
2

),max(
1

2211 nn ba
n

baba pppba 

§ 3.5 – Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank 93

Chap. 3

§3.6: Integers and Algorithms

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 94

Chap. 3

Integers & Algorithms

•• Topics:Topics:
–– Euclidean algorithm for finding GCDEuclidean algorithm for finding GCD’’s.s.
–– BaseBase--bb representations of integers.representations of integers.

•• Especially: binary, hexadecimal, octal.Especially: binary, hexadecimal, octal.
•• Also: TwoAlso: Two’’s complement representation of negative s complement representation of negative

numbers.numbers.

–– Algorithms for computer arithmetic:Algorithms for computer arithmetic:
•• Binary addition, multiplication, division.Binary addition, multiplication, division.

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 95

Chap. 3

Euclid’s Algorithm for GCD

•• Finding Finding GCDsGCDs by comparing prime by comparing prime
factorizations can be difficult if the factorizations can be difficult if the
prime factors are unknown.prime factors are unknown.

•• Euclid discovered: For all integers Euclid discovered: For all integers aa, , bb,,
gcd(gcd(aa, , bb) =) = gcd((gcd((aa mod mod bb),), bb))..

•• Sort Sort aa,,bb so that so that aa>>bb, and then (given , and then (given bb>1)>1)
((aa mod mod bb) <) < a,a, so problem is simplified.so problem is simplified.

Euclid of
Alexandria

325-265 B.C.

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 96

Chap. 3

Euclid’s Algorithm Example

•• gcd(372,164) = gcd(372 mod 164, 164).gcd(372,164) = gcd(372 mod 164, 164).
–– 372 mod 164 = 372372 mod 164 = 372164164372/164372/164 = 372= 372164164··2 = 2 =

372372328 = 44.328 = 44.

•• gcd(164,44) = gcd(164 mod 44, 44).gcd(164,44) = gcd(164 mod 44, 44).
–– 164 mod 44 = 164164 mod 44 = 1644444164/44164/44 = 164= 1644444··3 = 1643 = 164132 132

= 32.= 32.

•• gcd(44,32) = gcd(44 mod 32, 32) = gcd(12, 32) = gcd(44,32) = gcd(44 mod 32, 32) = gcd(12, 32) =
gcd(32 mod 12, 12) = gcd(8,12) = gcd(12 mod 8, gcd(32 mod 12, 12) = gcd(8,12) = gcd(12 mod 8,
8) = gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4.8) = gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4.

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 97

Chap. 3

Euclid’s Algorithm Pseudocode

procedure procedure gcdgcd((aa, , bb: positive integers): positive integers)
whilewhile b b  00

rr := := aa modmod bb; ; aa := := bb;; bb := := rr
return return aa

Fast! Number of while loop iterations
turns out to be O(log(max(a,b))).

Sorting inputs not needed b/c order
will be reversed each iteration.

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 98

Chap. 3

Base-b number systems

•• Ordinarily we write Ordinarily we write basebase--10 representations 10 representations
of numbers (using digits 0of numbers (using digits 0--9).9).

•• 10 isn10 isn’’t special; any base t special; any base bb>1 will work.>1 will work.
•• For any positive integers For any positive integers nn,,bb there is a there is a

unique sequence unique sequence aakk aakk--11…… aa11aa00 of of digitsdigits aaii<b<b
such thatsuch that





k

i

i
iban

0

The “base b
expansion

of n”
See module #12 for summation notation.

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 99

Chap. 3

Particular Bases of Interest

•• Base Base bb=10=10 (decimal):(decimal):
10 digits: 0,1,2,3,4,5,6,7,8,9.10 digits: 0,1,2,3,4,5,6,7,8,9.

•• Base Base bb=2=2 (binary):(binary):
2 digits: 0,1. (2 digits: 0,1. (““BitsBits””==““bibinary dignary digitsits..””))

•• Base Base bb=8=8 (octal):(octal):
8 digits: 0,1,2,3,4,5,6,7.8 digits: 0,1,2,3,4,5,6,7.

•• Base Base bb=16=16 (hexadecimal):(hexadecimal):
16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Used
internally in
all modern
computers

Hex digits give groups of 4 bits

Used only because
we have 10 fingers

Octal digits correspond to
groups of 3 bits

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 100

Chap. 3

Converting to Base b

((Algorithm, informally stated)Algorithm, informally stated)
•• To convert any integer To convert any integer nn to any base to any base bb>1:>1:
•• To find the value of the To find the value of the rightmostrightmost (lowest(lowest--

order) digit, simply compute order) digit, simply compute nn mod mod bb..
•• Now replace Now replace nn with the quotient with the quotient nn//bb..
•• Repeat above two steps to find subsequent Repeat above two steps to find subsequent

digits, until digits, until nn is gone (=0).is gone (=0).
Exercise for student: Write this out in pseudocode…

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 101

Chap. 3

Addition of Binary Numbers
procedureprocedure addadd((aann−−11……aa00, , bbnn−−11……bb00: binary : binary

representations of nonrepresentations of non--negative integers negative integers aa,,bb))
carry carry := 0:= 0
forfor bitIndexbitIndex := 0 := 0 to to nn−−11 {go through bits}{go through bits}

bitSumbitSum :=:= aabitIndexbitIndex++bbbitIndexbitIndex+carry+carry {2{2--bit sum}bit sum}
ssbitIndexbitIndex := := bitSumbitSum modmod 22 {low bit of sum}{low bit of sum}
carrycarry := := bitSumbitSum / 2/ 2 {high bit of sum}{high bit of sum}

ssnn := := carrycarry
returnreturn ssnn……ss00: binary representation of integer : binary representation of integer ss

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 102

Chap. 3

Two’s Complement

•• In binary, negative numbers can be conveniently In binary, negative numbers can be conveniently
represented using represented using twotwo’’s complement notations complement notation..

•• In this scheme, a string of In this scheme, a string of n n bits can represent any bits can represent any
integer integer ii such that such that −−22nn−−11 ≤≤ ii < 2< 2nn−−11..

•• The bit in the highestThe bit in the highest--order bitorder bit--position (position (nn−−1) 1)
represents a coefficient multiplying represents a coefficient multiplying −−22nn−−11;;
–– The other positions The other positions ii < < nn−−1 just represent 21 just represent 2ii, as before., as before.

•• The negation of any The negation of any nn--bit twobit two’’s complement s complement
number number aa = = aann−−11……aa00 is given is given by by aann−−11……aa00 + 1+ 1..

The bitwise logical complement of the n-bit string an−1…a0.
§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 103

Chap. 3

Correctness of Negation Algorithm

•• Theorem:Theorem: For an integer For an integer aa represented in represented in
twotwo’’s complement notation, s complement notation, −−aa = = aa + 1+ 1..

•• Proof:Proof:

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 104

Chap. 3

Subtraction of Binary Numbers

procedureprocedure subtractsubtract((aann−−11……aa00, , bbnn−−11……bb00: :
binary twobinary two’’s complement representations of s complement representations of
integers integers aa,,bb))
returnreturn addadd((aa, , addadd((bb,1)) { ,1)) { aa + (+ (−−bb)) }}

This fails if either of the adds causes a carry This fails if either of the adds causes a carry
into or out of the into or out of the nn−−1 position, since 1 position, since
22nn−−22+2+2nn−−22 ≠≠ −−22nn−−11, and , and −−22nn−−1 1 + (+ (−−22nn−−11) =) =
−−22nn isnisn’’t t representablerepresentable!!

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 105

Chap. 3

Multiplication of Binary Numbers

procedureprocedure multiplymultiply((aann−−11……aa00, , bbnn−−11……bb00: :
binary representations of binary representations of aa,,bbNN))
productproduct := 0:= 0
forfor ii := 0 to := 0 to nn−−11

ifif bbii = 1 = 1 thenthen
productproduct := := addadd((aann−−11……aa0000ii, , productproduct))

returnreturn productproduct i extra 0-bits
appended after
the digits of a§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 106

Chap. 3

Binary Division with Remainder

procedureprocedure divdiv--modmod((aa,,dd  ZZ++) {Quotient &) {Quotient & remrem. of . of aa//dd.}.}
nn := max(length of := max(length of aa in bits, length of in bits, length of dd in bits)in bits)
forfor ii := := nn−−11 downtodownto 00

ifif a a ≥≥ dd00ii thenthen {Can we subtract at this position?}{Can we subtract at this position?}
qqii :=:= 11 {This bit of quotient is 1.}{This bit of quotient is 1.}
aa := := aa −− dd00ii {Subtract to get remainder.}{Subtract to get remainder.}

elseelse
qqii := 0:= 0 {This bit of quotient is 0.}{This bit of quotient is 0.}

rr := := aa
returnreturn qq,,rr {{qq = quotient, = quotient, rr = remainder}= remainder}

§ 3.6 – Integers and Algorithms

(c)2001-2002, Michael P. Frank 107

Chap. 3

§3.7: Applications of Number
Theory

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 108

Chap. 3

Some Useful Results

Theorem 1:Theorem 1: If If aa and and bb are positive integers, are positive integers,
then there exist integers then there exist integers ss and and tt such that such that
gcd(gcd(aa, , bb)=)=sasa++tbtb..

Example:Example: Express gcd(252, 198) as a linear Express gcd(252, 198) as a linear
combination of 252 and 198.combination of 252 and 198.

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 109

Chap. 3

Some Useful Results

Lemma 1:Lemma 1: If If a, ba, b and and cc are positive integers such are positive integers such
that that gcd(gcd(aa, , bb)=1 and)=1 and aa||bcbc, then , then aa||cc..

PfPf: by Theorem 1, 1=: by Theorem 1, 1=sasa++tbtb, ,  cc==sacsac++tbctbc

Lemma 2:Lemma 2: If If pp is a prime and is a prime and pp||aa11aa22aann, where , where
each each aaii is an integer, then is an integer, then pp||aaii for some for some ii..

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 110

Chap. 3

Some Useful Results

Theorem 2:Theorem 2: Let Let mm be a positive integer and let be a positive integer and let aa, , bb
and and cc be integers. If be integers. If ac ac  bcbc (mod(mod mm)) and and gcd(gcd(cc, ,
mm)=1, then)=1, then a a  b b (mod(mod mm))..

PfPf::

Example:Example: 14 14  8 (mod 6), then 7 8 (mod 6), then 7  4 (mod 6) ?4 (mod 6) ?

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 111

Chap. 3

Linear Congruences

Theorem 3:Theorem 3: If If aa and and mm are relatively prime integers are relatively prime integers
and and mm > 1, then an inverse of > 1, then an inverse of a a modulo modulo mm exists. exists.
Furthermore, this inverse is unique modulo Furthermore, this inverse is unique modulo mm. .

PfPf::

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 112

Chap. 3

Linear Congruences

Example:Example: Find an inverse of 3 modulo 7.Find an inverse of 3 modulo 7.

Example:Example: Solve 3Solve 3x x  4 (mod 7).4 (mod 7).
SolSol::

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 113

Chap. 3

Extended Euclid’s Algorithm

EXTENDED EXTENDED EUCLID(EUCLID(mm, , bb))
{{ (A(A11, A, A22, A, A33)=(1, 0,)=(1, 0, mm); (B); (B11, B, B22, B, B33)=(0, 1,)=(0, 1, bb) ;) ;

whilewhile ((B((B33!=0) && (B!=0) && (B33!=1))!=1))
{{ Q = AQ = A33 div Bdiv B3 3 ;;

(T(T11, T, T22, T, T33)=(A)=(A11––Q*BQ*B11, A, A22––Q*BQ*B22, A, A33––Q*BQ*B33) ;) ;
(A(A11, A, A22, A, A33)=(B)=(B11, B, B22, B, B33) ;) ;
(B(B11, B, B22, B, B33)=(T)=(T11, T, T22, T, T33) ;) ; }}

ifif (B(B33 = 0) = 0) returnreturn gcd(gcd(mm, , bb) = A) = A33; no inverse ;; no inverse ;
ifif (B(B33 = 1) = 1) returnreturn gcd(gcd(mm, , bb)=1;)=1; bb––11 mod mod m = m = BB2 2 ;;

}}

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 114

Chap. 3

Extended Euclid’s Algorithm

Example:Example: Find Find the inverse of 550 mod 1759.the inverse of 550 mod 1759.

§ 3.7 – Applications of Number Theory

1355–1114–3391061
4–339106516–521
516–5109–315

109–31550103
55010175901—
B3B2B1A3A2A1Q

(c)2001-2002, Michael P. Frank 115

Chap. 3

Chinese Remainder Theorem

Theorem 4:Theorem 4: Let Let mm11, m, m22,, , , mmnn bebe pairwisepairwise
relatively prime positive integers and relatively prime positive integers and aa11, a, a22,, , a, ann
arbitrary integers. Then the systemarbitrary integers. Then the system

has a unique solution modulo has a unique solution modulo m m = = mm11mm22 mmnn ..

),(mod

),(mod
),(mod

22

11

nn max

max
max








§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 116

Chap. 3

Fermat’s Little Theorem

Theorem 5:Theorem 5: If If pp is ais a prime positive integers and prime positive integers and aa
is an integer not divisible by is an integer not divisible by pp, then, then

Furthermore, for every integer Furthermore, for every integer aa we havewe have

Example:Example: The integer The integer 341341 is a is a pseudoprimepseudoprime to the to the
base 2base 2 because it is composite (11because it is composite (1131) and 231) and 2340340 1 1
(mod 341).(mod 341).

).(mod 11 pa p 

§ 3.7 – Applications of Number Theory

).(mod paa p 

(c)2001-2002, Michael P. Frank 117

Chap. 3

Public Key Cryptography

RSA Cryptosystem:RSA Cryptosystem: There are a private key and a There are a private key and a
public key. It is an exponentiation algorithm. public key. It is an exponentiation algorithm.
(Also known as MIT algorithm)(Also known as MIT algorithm)

RSA EncryptionRSA Encryption: : C C = = M M ee modmod n.n.
RSA DecryptionRSA Decryption: : M M = = C C dd modmod n.n.

where where n n = = pqpq , p , p and and q q are twoare two large primes, large primes, andand
ed mod ed mod ((nn)) = = 11 withwith ((nn)) = = ((pp--1)(1)(qq--1)1)..

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 118

Chap. 3

Public Key Cryptography

Example:Example: Let Let n n = 15, = 15, ee = 3, encrypt = 3, encrypt MM = 7.= 7.

ExampleExample: Encrypt the message STOP with : Encrypt the message STOP with p p = = 43, 43,
q =q =59, 59, withwith ee = 13.= 13...

SolSol: :

§ 3.7 – Applications of Number Theory

(c)2001-2002, Michael P. Frank 119

Chap. 3

§3.8: Matrices

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 120

Chap. 3

Matrices

•• A A matrixmatrix (say MAY(say MAY--trixtrix) is a) is a rectanrectan--
gulargular array of objects (usually numbers).array of objects (usually numbers).

•• An An mmnn ((““mm by by nn””) matrix has exactly) matrix has exactly mm
horizontal rows, horizontal rows, andand nn vertical columnsvertical columns..

•• Plural of matrix = Plural of matrix = matricesmatrices
(say MAY(say MAY--trihtrih--sees)sees)

•• An An nnnn matrix is called a matrix is called a squaresquare matrixmatrix,,
whose whose orderorder is is nn..

















07
15

32
a 32
matrix

Note: The singular form
of “matrices” is “matrix,”
not “MAY-trih-see”!

Not
our

meaning!

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 121

Chap. 3

Applications of Matrices

Tons of applications, including:Tons of applications, including:
•• Solving systems of linear equationsSolving systems of linear equations
•• Computer Graphics, Image ProcessingComputer Graphics, Image Processing
•• Models within Computational Science & Models within Computational Science &

EngineeringEngineering
•• Quantum Mechanics, Quantum ComputingQuantum Mechanics, Quantum Computing
•• Many, many moreMany, many more……

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 122

Chap. 3

Matrix Equality

•• Two matrices Two matrices AA and and BB are equal are equal iffiff they they
have the same number of rows, the same have the same number of rows, the same
number of columns, and all corresponding number of columns, and all corresponding
elements are equal.elements are equal.



















 061

023
61
23

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 123

Chap. 3

Row and Column Order

•• The rows in a matrix are usually indexed 1 The rows in a matrix are usually indexed 1
to to mm from top to bottom. The columns are from top to bottom. The columns are
usually indexed 1 to usually indexed 1 to nn from left to right. from left to right.
Elements are indexed by row, then column.Elements are indexed by row, then column.





















nmmm

n

n

ji

aaa

aaa
aaa

a

,2,1,

,22,21,2

,12,11,1

,][









A

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 124

Chap. 3

Matrices as Functions

•• An An mmnn matrix matrix AA = [= [aaii,,jj] of members of a] of members of a
set set SS can be encoded as a partial function can be encoded as a partial function

ffAA: : ℕℕℕℕ→→SS, ,
such that for such that for ii<<mm, , jj<<nn, , ffAA((ii, , jj) =) = aaii,,jj..

•• By extending the domain over which By extending the domain over which ffAA is is
defined, various types of infinite and/or defined, various types of infinite and/or
multidimensional matrices can be obtained.multidimensional matrices can be obtained.

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 125

Chap. 3

Matrix Sums

•• The The sumsum AA++BB of two matrices of two matrices AA, , BB (which (which
mustmust have the same number of rows, and have the same number of rows, and
the same number of columns) is the matrix the same number of columns) is the matrix
(also with the same shape) given by adding (also with the same shape) given by adding
corresponding elements.corresponding elements.

•• AA++BB = [= [aaii,,jj++bbii,,jj]]




























 311

39
80

62

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 126

Chap. 3

Matrix Products

•• For an For an mmkk matrix matrix AA and a and a kknn matrix matrix BB, the , the
productproduct ABAB is the is the mmnn matrix:matrix:

•• I.e.I.e., element (, element (ii,,jj) of) of ABAB is given by the vector is given by the vector dot dot
productproduct of the of the iithth row of row of AA and the and the jjthth column of column of
BB (considered as vectors).(considered as vectors).

•• Note: Matrix multiplication is Note: Matrix multiplication is notnot commutative!commutative!









 



k

jiji bac
1

,,,][


CAB

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 127

Chap. 3

Matrix Product Example

•• An example matrix multiplication to An example matrix multiplication to
practice in class:practice in class:

§ 3.8 – Matrices





























×






 

1301
0202
0110

302
110

(c)2001-2002, Michael P. Frank 128

Chap. 3

Identity Matrices

•• The The identity matrix of order n, identity matrix of order n, IInn,, is the is the
orderorder--nn matrix with 1matrix with 1’’s along the uppers along the upper--left left
to lowerto lower--right diagonal and 0right diagonal and 0’’s everywhere s everywhere
else. else.





































100

010
001

 if 0
 if 1









ji
ji

nI

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 129

Chap. 3

Review: Matrices, so far

Matrix sums and products:Matrix sums and products:
AA++BB = [= [aaii,,jj++bbii,,jj]]

Identity matrix of order Identity matrix of order nn::
IInn = [= [ijij], where], where ijij=1 if =1 if ii==jj and and ijij=0 if =0 if iijj..









 



k

jiji bac
1

,,,][


CAB

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 130

Chap. 3

Matrix Inverses

•• For some (but not all) square matrices For some (but not all) square matrices AA, ,
there exists a unique multiplicative there exists a unique multiplicative inverseinverse
AA--11 of of AA, a matrix such that , a matrix such that AA--11AA = = IInn..

•• If If the inverse exists, it is uniquethe inverse exists, it is unique, and , and
AA--11AA = = AAAA--11..

•• We wonWe won’’t go into the algorithms for matrix t go into the algorithms for matrix
inversion...inversion...

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 131

Chap. 3

Matrix Multiplication Algorithm

procedureprocedure matmulmatmul(matrices(matrices AA: : mmkk, , BB: : kknn))
forfor ii := 1 := 1 toto mm

forfor jj := 1 := 1 toto nn beginbegin
ccijij := 0:= 0
forfor qq := 1 := 1 toto kk

ccijij := := ccijij + + aaiqiqbbqjqj

endend {{CC=[=[ccijij] is the product of] is the product of AA and and BB}}

What’s the  of its
time complexity?

(m)·

(n)·(

(1)+

(k) ·

(1))

Answer:
(mnk)

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 132

Chap. 3

Powers of Matrices

If If AA is an is an nnnn square matrix and square matrix and pp0, then:0, then:
•• AApp  AAAAAA······A A ((AA00  IInn))

•• Example:Example:

p times







































 01

12
01
12

01
12

01
12 3

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 133

Chap. 3

•• If If AA=[=[aaijij] is an] is an mmnn matrix, the matrix, the transposetranspose of of
AA (often written (often written AAtt or or AATT) is the) is the nnmm matrix matrix
given by given by AAt t = = BB = [= [bbijij] = [] = [aajiji]] (1(1iinn,1,1jjmm))

Matrix Transposition

Flip
across

diagonal





























23
11

02

210
312 t

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 134

Chap. 3

Symmetric Matrices

•• A A squaresquare matrix matrix AA is is symmetricsymmetric iffiff AA==AAtt. .
I.e.I.e., , ii,,jjnn: : aaijij = = aajiji ..

•• Which is symmetric?Which is symmetric?




















211
120

103






















213
101

312

















11
11
11

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 135

Chap. 3

Zero-One Matrices

•• Useful for representing other structures.Useful for representing other structures.
–– E.g.E.g., relations, directed graphs (later in course), relations, directed graphs (later in course)

•• All elements of a All elements of a zerozero--oneone matrix are 0 or 1matrix are 0 or 1
–– Representing Representing False False & & True True respectively.respectively.

•• The The meetmeet of of AA, , BB (both (both mmnn zerozero--one matrices):one matrices):
–– AAB B :: [[aaijijbbijij] = [] = [aaijij bbijij]]

•• The The joinjoin of of AA, , BB::
–– AAB B :: [[aaijijbbijij]]

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 136

Chap. 3

Boolean Products

•• Let Let AA=[=[aaijij] be an] be an mmkk zerozero--one matrix,one matrix,
& let & let BB=[=[bbijij] be a] be a kknn zerozero--one matrix,one matrix,

•• The The booleanboolean productproduct of of AA and and BB is like is like
normal matrix normal matrix , but using , but using  instead + in instead + in
the rowthe row--column column ““vector dot productvector dot product..””





  


ji

k

ij bac 
 1

][CA⊙B

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank 137

Chap. 3

Boolean Powers

•• For a square zeroFor a square zero--one matrix one matrix AA, and any , and any
kk00,, the the kthkth Boolean power of Boolean power of AA is simply is simply
the Boolean product of the Boolean product of kk copies of copies of AA..

•• AA[[kk]]  AA⊙⊙AA⊙⊙……⊙⊙AA

k times

§ 3.8 – Matrices

