Chapter 3: The Fundamentals: Algorithms, the Integers, and Matrices

by Mingfu LI, CGUEE

§3.1: Algorithms

(c)2001-2002, Michael P. Frank

§ 3.1 – Algorithms

- A computer *program* is simply a description of an algorithm in a language precise enough for a computer to understand, requiring only operations the computer already knows how to do.
- We say that a program *implements* (or "is an implementation of") its algorithm.

Programming Languages

- Some common programming languages:
 - Newer: Java, C, C++, Visual Basic, JavaScript, Perl, Tcl, Pascal
 - Older: Fortran, Cobol, Lisp, Basic
 - Assembly languages, for low-level coding.
- In this class we will use an informal, Pascal-like "*pseudo-code*" language.
- You should know at least 1 real language!

Algorithm Example (English)

- Task: Given a sequence $\{a_i\}=a_1,\ldots,a_n, a_i \in \mathbb{N}$, say what its largest element is.
- Set the value of a *temporary variable* v (largest element seen so far) to a_1 's value.
- Look at the next element a_i in the sequence.
- If $a_i > v$, then re-assign v to the number a_i .
- Repeat previous 2 steps until there are no more elements in the sequence, & return *v*.

Executing an Algorithm

- When you start up a piece of software, we say the program or its algorithm are being *run* or *executed* by the computer.
- Given a description of an algorithm, you can also execute it by hand, by working through all of its steps on paper.
- Before ~WWII, "computer" meant a *person* whose job was to run algorithms!

Executing the Max algorithm

- Let $\{a_i\}=7,12,3,15,8$. Find its maximum...
- Set $v = a_1 = 7$.
- Look at next element: $a_2 = 12$.
- Is $a_2 > v$? Yes, so change v to 12.
- Look at next element: $a_2 = 3$.
- Is 3>12? No, leave *v* alone....
- Is 15>12? Yes, v=15...

Algorithm Characteristics

Some important features of algorithms:

- *Input*. Information or data that comes in.
- *Output*. Information or data that goes out.
- *Definiteness*. Precisely defined.
- *Correctness*. Outputs correctly relate to inputs.
- *Finiteness*. Won't take forever to describe or run.
- *Effectiveness*. Individual steps are all do-able.
- *Generality*. Works for many possible inputs.
- *Efficiency*. Takes little time & memory to run.

procedure procname(arg: type)

• Declares that the following text defines a procedure named *procname* that takes inputs (*arguments*) named *arg* which are data objects of the type *type*.

– Example:

procedure maximum(L: list of integers)
[statements defining maximum...]

• In pseudocode (but not real code), the <u>expression</u> might be informal:

-x := the largest integer in the list *L*

Informal statement

- Sometimes we may write a statement as an informal English imperative, if the meaning is still clear and precise: "swap *x* and *y*"
- Keep in mind that real programming languages never allow this.
- When we ask for an algorithm to do so-andso, writing "Do so-and-so" isn't enough!

- Break down algorithm into detailed steps.

if *condition* then *statement*

- Evaluate the propositional expression <u>condition</u>.
- If the resulting truth value is **true**, then execute the statement *statement*; otherwise, just skip on ahead to the next statement.
- Variant: if <u>cond</u> then <u>stmt1</u> else <u>stmt2</u> Like before, but iff truth value is false, executes <u>stmt2</u>.

while *condition statement*

- *Evaluate* the propositional expression <u>condition</u>.
- If the resulting value is **true**, then execute <u>statement</u>.
- Continue repeating the above two actions over and over until finally the <u>condition</u> evaluates to **false**; then go on to the next statement.

Chap. 3

by Mingfu LI, CGUEE

while *condition statement*

(c)2001-2002, Michael P. Frank

procedure(argument)

- A *procedure call* statement invokes the named *procedure*, giving it as its input the value of the *argument* expression.
- Various real programming languages refer to procedures as *functions* (since the procedure call notation works similarly to function application *f*(*x*)), or as *subroutines*, *subprograms*, or *methods*.

Max procedure in pseudocode

procedure $max(a_1, a_2, ..., a_n)$: integers) $v := a_1$ {largest element so far} for i := 2 to $n \{$ go thru rest of elems $\}$ if $a_i > v$ then $v := a_i$ {found bigger?} {at this point *v*'s value is the same as the largest integer in the list} return v

Another example task

- Problem of *searching an ordered list*.
 - Given a list *L* of *n* elements that are sorted into a definite order (*e.g.*, numeric, alphabetical),
 - And given a particular element x,
 - Determine whether x appears in the list,
 - and if so, return its index (position) in the list.
- Problem occurs often in many contexts.
- Let's find an *efficient* algorithm!

Search alg. #1: Linear Search

procedure linear search (x: integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1while $(i \leq n \land x \neq a_i)$ i := i + 1if $i \leq n$ then location : = i else location : = 0**return** *location* {index or 0 if not found}

Search alg. #2: Binary Search

procedure binary search (x:integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1 {left endpoint of search interval} $j := n \{ \text{right endpoint of search interval} \}$ **while** *i* < *j* **begin** {while interval has >1 item} $m := \lfloor (i+j)/2 \rfloor \{ \text{midpoint} \}$ if $x > a_m$ then i := m+1 else j := mend if $x = a_i$ then location : = i else location : = 0 return location

(c)2001-2002, Michael P. Frank

by Mingfu LI, CGUEE

Sorting alg. : Insertion Sort

procedure insertionsort($a_1, a_2, ..., a_n$) **for** j := 2 **to** nbegin i := 1while $a_i > a_i$ i := i+1 $m := a_i$ **for** k := 0 to *j*-*i*-1 $a_{j-k} := a_{j-k-1}$ a_i : = m $\{a_1, a_2, ..., a_n \text{ are sorted}\}$ end

by Mingfu LI, CGUEE

§3.2: The Growth of Functions

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

Orders of Growth

- For functions over numbers, we often need to know a rough measure of *how fast a function grows*.
- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit (for large enough values of x).
- Useful in engineering for showing that one design *scales* better or worse than another.

Orders of Growth - Motivation

- Suppose you are designing a web site to process user data (*e.g.*, financial records).
- Suppose database program A takes $f_A(n)=30n+8$ microseconds to process any *n* records, while program B takes $f_B(n)=n^2+1$ microseconds to process the *n* records.
- Which program do you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

• On a graph, as you go to the $f_{A}(n) = 30n + 8$ Value of function right, a faster growing function $f_{\rm B}(n) = n^2 + 1$ eventually becomes larger... Increasing $n \rightarrow$

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

Concept of order of growth

- We say $f_A(n)=30n+8$ is order *n*, or O(n). It is, at most, roughly *proportional* to *n*.
- $f_{\rm B}(n)=n^2+1$ is *order* n^2 , or O(n^2). It is roughly proportional to n^2 .
- Any O(*n*²) function is faster-growing than any O(*n*) function.
- For large numbers of user records, the $O(n^2)$ function will always take more time.

Definition: O(g), at most order g

Let *g* be any function $\mathbf{R} \rightarrow \mathbf{R}$.

- Define "*at most order g*", written O(g), to be: $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid \exists c, k: \forall x > k: f(x) \leq cg(x)\}$.
 - "Beyond some point k, function f is at most a constant c times g (i.e., proportional to g)."
- "*f* is at most order g", or "*f* is O(g)", or "*f*=O(g)" all just mean that $f \in O(g)$.
- Sometimes the phrase "at most" is omitted.

Points about the definition

- Note that *f* is O(*g*) so long as *any* values of *c* and *k* exist that satisfy the definition.
- But: The particular *c*, *k*, values that make the statement true are *not* unique: Any larger value of *c* and/or *k* will also work.
- You are **not** required to find the smallest *c* and *k* values that work. (Indeed, in some cases, there may be no smallest values!)

However, you should **prove** that the values you choose do work.

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

Useful Facts about Big O

- Big O, as a relation, is transitive: $f \in O(g) \land g \in O(h) \rightarrow f \in O(h)$
- O with constant multiples, roots, and logs... $\forall f(\text{in }\omega(1)) \& \text{ constants } a, b \in \mathbb{R}, \text{ with } b \ge 0,$ $af, f^{1-b}, \text{ and } (\log_b f)^a \text{ are all } O(f).$
- Sums of functions: If $g \in O(f)$ and $h \in O(f)$, then $g+h \in O(f)$.

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

Orders of Growth (§3.2) - So Far

- For any $g: \mathbf{R} \to \mathbf{R}$, "at most order g", $O(g) \equiv \{f: \mathbf{R} \to \mathbf{R} \mid \exists c, k \forall x > k \mid f(x) \mid \le |cg(x)|\}.$
 - Often, one deals only with positive functions and can ignore absolute value symbols.
- "*f*∈O(*g*)" often written "*f* is O(*g*)" or "*f*=O(*g*)".
 - The latter form is an instance of a more general convention...

Order-of-Growth Expressions

- "O(*f*)" when used as a term in an arithmetic expression means: "some function *f* such that $f \in O(f)$ ".
- *E.g.*: "x²+O(x)" means "x² plus some function that is O(x)".
- Formally, you can think of any such expression as denoting a set of functions: " $x^2+O(x)$ " := $\{g \mid \exists f \in O(x): g(x)=x^2+f(x)\}$

Order of Growth Equations

- Suppose E_1 and E_2 are order-of-growth expressions corresponding to the sets of functions *S* and *T*, respectively.
- Then the "equation" $E_1 = E_2$ really means $\forall f \in S, \exists g \in T : f = g$ or simply $S \subseteq T$.
- Example: $x^2 + O(x) = O(x^2)$ means $\forall f \in O(x)$: $\exists g \in O(x^2)$: $x^2 + f(x) = g(x)$

- If *f*∈O(*g*) and *g*∈O(*f*) then we say "*g* and *f* are of the same order" or "*f* is (exactly) order g" and write *f*∈Θ(g).
- Another equivalent definition: $\Theta(g) \equiv \{f: \mathbf{R} \rightarrow \mathbf{R} \mid \\ \exists c_1 c_2 k \; \forall x > k: \; |c_1 g(x)| \le |f(x)| \le |c_2 g(x)| \}$
- "Everywhere beyond some point k, f(x) lies in between two multiples of g(x)."

 The functions in the latter two cases we say are strictly of lower order than Θ(f).

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

Other Order-of-Growth Relations

- $\Omega(g) = \{f | g \in O(f)\}$ "The functions that are *at least order g*."
- $o(g) = \{f \mid \forall c > 0 \exists k \forall x > k : |f(x)| < |cg(x)|\}$ "The functions that are *strictly lower order than g.*" $o(g) \subset O(g) - \Theta(g)$.
- $\omega(g) = \{f \mid \forall c > 0 \exists k \forall x > k : |cg(x)| < |f(x)|\}$ "The functions that are *strictly higher order than g.*" $\omega(g) \subset \Omega(g) - \Theta(g)$.

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

(c)2001-2002, Michael P. Frank

§ 3.2 – The Growth of Functions

• Temporarily let's write $f \prec g$ to mean $f \in o(g)$, $f \sim g$ to mean $f \in \Theta(g)$

) Wingfu LI, CGUEE

- Note that $f \prec g \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$
- Let *k*>1. Then the following are true: $1 \prec \log \log n \prec \log n \sim \log_k n \prec \log^k n$ $\prec n^{1/k} \prec n \prec n \log n \prec n^k \prec k^n \prec n! \prec n^n \dots$

Review: Growth of Functions (§3.2)

Definitions of order-of-growth sets, $\forall g: \mathbf{R} \rightarrow \mathbf{R}$

- $O(g) \equiv \{ f \mid \exists c > 0 \exists k \forall x > k \mid f(x) \mid < |cg(x)| \}$
- $o(g) \equiv \{ f \mid \forall c > 0 \exists k \forall x > k | f(x) | < |cg(x)| \}$
- $\Omega(g) \equiv \{f \mid g \in \mathcal{O}(f)\}$
- $\omega(g) \equiv \{f \mid g \in o(f)\}$ $\Theta(g) \equiv O(g) \cap \Omega(g)$

by Mingfu LI, CGUEE

§3.3: Complexity of Algorithms

(c)2001-2002, Michael P. Frank

§ 3.3 – Complexity of Algorithms

What is *complexity*?

- The word *complexity* has a variety of technical meanings in different fields.
- There is a field of *complex systems*, which studies complicated, difficult-to-analyze *non-linear* and *chaotic* natural & artificial systems.
- Another concept: *Informational complexity*: the amount of *information* needed to completely describe an object. (An active research field.)
- We will study *algorithmic complexity*.

Algorithmic Complexity

- The *algorithmic complexity* of a computation is some measure of how *difficult* it is to perform the computation.
- Measures some aspect of *cost* of computation (in a general sense of cost).
- Common complexity measures:

– "Space" complexity: # of memory bits req'd

- Another, increasingly important measure of complexity for computing is *energy complexity* How much total energy is used in performing the computation.
- Motivations: Battery life, electricity cost...
- I develop *reversible* circuits & algorithms that recycle energy, trading off energy complexity for spacetime complexity.

Complexity Depends on Input

- Most algorithms have different complexities for inputs of different sizes. (*E.g.* searching a long list takes more time than searching a short one.)
- Therefore, complexity is usually expressed as a *function* of input length.
- This function usually gives the complexity for the *worst-case* input of any given length.

Complexity & Orders of Growth

- Suppose algorithm A has worst-case time complexity (w.c.t.c., or just *time*) *f*(*n*) for inputs of length *n*, while algorithm B (for the same task) takes time *g*(*n*).
- Suppose that $f \in \omega(g)$, also written $f \succ g$
- Which algorithm will be *fastest* on all sufficiently-large, worst-case inputs?

Example 1: Max algorithm

Problem: Find the *simplest form* of the *exact* order of growth (☉) of the *worst-case* time complexity (w.c.t.c.) of the *max* algorithm, assuming that each line of code takes some constant time every time it is executed (with possibly different times for different lines of code).

Discrete Mathematics Chap. 3 by Mingto LI, CGUE
Complexity analysis, cont.
Now, what is the simplest form of the exact
(
$$\Theta$$
) order of growth of $t(n)$?
 $t(n) = t_1 + \left(\sum_{i=2}^n (t_2 + t_3)\right) + t_4$
 $= \Theta(1) + \left(\sum_{i=2}^n \Theta(1)\right) + \Theta(1) = \Theta(1) + (n-1)\Theta(1)$
 $= \Theta(1) + \Theta(n)\Theta(1) = \Theta(1) + \Theta(n) = \Theta(n)$

(c)2001-2002, Michael P. Frank $\S 3.3 - Complexity of Algorithms$

(c)2001-2002, Michael P. Frank $\S 3.3 - Complexity of Algorithms$

Review §3.3: Complexity

- Algorithmic complexity = *cost* of computation.
- Focus on *time* complexity (space & energy are also important.)
- Characterize complexity as a function of input size: Worst-case, best-case, average-case.
- Use orders of growth notation to concisely summarize growth properties of complexity fns.

§ 3.3 – Complexity of Algorithms (c)2001-2002, Michael P. Frank

Binary search analysis

- Suppose $n=2^k$.
- Original range from *i*=1 to *j*=*n* contains *n* elems.
- Each iteration: Size j i + 1 of range is cut in half.
- Loop terminates when size of range is 1=2⁰ (*i*=*j*).
- Therefore, number of iterations is $k = \log_2 n$ = $\Theta(\log_2 n) = \Theta(\log n)$
- Even for $n \neq 2^k$ (not an integral power of 2), time complexity is still $\Theta(\log_2 n) = \Theta(\log n)$.

Names for some orders of growth

Constant

- $\Theta(1)$
- $\Theta(\log_c n)$ $\Theta(\log^c n)$
- $\Theta(n)$
- $\Theta(n^c)$
- $\Theta(c^n), c>1$ Exponential

Logarithmic (same order $\forall c$) (With *c* Polylogarithmic a constant.)

- Linear
 - Polynomial
- **Factorial**

• *E.g.* the problem of searching an ordered list has *at most logarithmic* time complexity. (Complexity is O(log *n*).)

Tractable vs. intractable

- A problem or algorithm with at most polynomial time complexity is considered *tractable* (or *feasible*). P is the set of all tractable problems.
- A problem or algorithm that has more than polynomial complexity is considered *intractable* (or *infeasible*).
- Note that $n^{1,000,000}$ is *technically* tractable, but really impossible. $n^{\log \log \log n}$ is *technically* intractable, but easy. Such cases are rare though.

Unsolvable problems

- Turing discovered in the 1930's that there are problems unsolvable by *any* algorithm.
 - Or equivalently, there are undecidable yes/no questions, and uncomputable functions.
- Example: the *halting problem*.
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "*infinite loop*?"

- solutions to see if they are correct.
- We know P⊆NP, but the most famous unproven conjecture in computer science is that this inclusion is *proper* (*i.e.*, that P⊂NP rather than P=NP).
- Whoever first proves it will be famous!
| Discrete Mathematics | | Chap. 3 | by Mingfu LI, CGUEE |
|--|--|--|--|
| Computer Time Examples | | | |
| $\frac{\#ops(n)}{\log_2 n}$ $\frac{n}{n \log_2 n}$ $\frac{n^2}{2^n}$ | (1.25 bytes)
n=10
3.3 ns
10 ns
33 ns
100 ns
1.024 μ s
3.63 ms | (125 kB)
$n=10^{6}$
19.9 ns
1 ms
19.9 ms
16 m 40 s
10 ^{301,004.5}
Gyr
Ouch! | Assume time
= 1 ns $(10^{-9}$
second) per
op, problem
size = <i>n</i> bits,
#ops a
function of <i>n</i>
as shown. |

(c)2001-2002, Michael P. Frank $\S 3.3 - Complexity of Algorithms$

• How to analyze the worst case, best case, or average case order of growth of time complexity for simple algorithms.

by Mingfu LI, CGUEE

§3.4: The Integers and Division

(c)2001-2002, Michael P. Frank

 \S 3.4 – The Integers and Division

The Integers and Division

- Of course you already know what the integers are, and what division is...
- **But:** There are some specific notations, terminology, and theorems associated with these concepts which you may not know.
- These form the basics of *number theory*.
 - Vital in many important algorithms today (hash functions, cryptography, digital signatures).

Divides, Factor, Multiple

- Let $a, b \in \mathbb{Z}$ with $a \neq 0$.
- $a|b \equiv a \text{ divides } b^{"} :\equiv \exists c \in \mathbb{Z}: b = ac"$ "There is an integer c such that c times a equals b."

- Example: $3|-12 \Leftrightarrow \mathbf{True}$, but $3|7 \Leftrightarrow \mathbf{False}$.

• Iff *a* divides *b*, then we say *a* is a *factor* or a *divisor* of *b*, and *b* is a *multiple* of *a*.

• "b is even" :
$$\equiv 2|b$$
. Is 0 even? Is -4?

More Detailed Version of Proof

- Show $\forall a, b, c \in \mathbb{Z}$: $(a|b \land a|c) \rightarrow a \mid (b+c)$.
- Let a, b, c be any integers such that a|b and a|c, and show that a | (b + c).
- By defn. of |, we know $\exists s: b = as$, and $\exists t: c = at$. Let *s*, *t*, be such integers.
- Then b+c = as + at = a(s+t), so $\exists u: b+c=au$, namely u=s+t. Thus a|(b+c).

The Division "Algorithm"

- Really just a *theorem*, not an algorithm...
 The name is used here for historical reasons.
- For any integer *dividend a* and *divisor* $d \neq 0$, there is a unique integer *quotient q* and *remainder r* \in **N** \ni *a* = *dq* + *r* and 0 \leq *r* < |d|. (such that)
- $\forall a,d \in \mathbb{Z}, d \ge 0$: $\exists !q,r \in \mathbb{Z}$: $0 \le r \le |d|, a = dq + r$.
- We can find q and r by: $q = \lfloor a/d \rfloor$, r = a qd.

• We can compute $(a \mod d)$ by: $a - d \lfloor a/d \rfloor$.

81

• In C programming language, "%" = mod.

Modular Congruence

- Let $\mathbf{Z}^+ = \{n \in \mathbf{Z} \mid n > 0\}$, the positive integers.
- Let $a, b \in \mathbb{Z}, m \in \mathbb{Z}^+$.
- Then *a* is congruent to *b* modulo *m*, written " $a \equiv b \pmod{m}$ ", iff $m \mid a b$.
- Also equivalent to: $(a-b) \mod m = 0$.
- (Note: this is a different use of "≡" than the meaning "is defined as" I've used before.)

(c)2001-2002, Michael P. Frank

 \S 3.4 – The Integers and Division

Discrete Mathematics

Chap. 3

by Mingfu LI, CGUEE

§3.5: Primes and Greatest Common Divisors

(c)2001-2002, Michael P. Frank § 3.5 – Primes and Greatest Common Divisors

Prime Numbers

- An integer p>1 is *prime* iff it is not the product of any two integers greater than 1: $p>1 \land \neg \exists a, b \in \mathbb{N}: a>1, b>1, ab=p.$
- The only positive factors of a prime *p* are 1 and *p* itself. Some primes: 2,3,5,7,11,13...
- Non-prime integers greater than 1 are called *composite*, because they can be *composed* by multiplying two integers greater than 1.

Fundamental Theorem of Arithmetic

• Every positive integer has a unique representation as the product of a non-decreasing series of zero or more primes.

-1 = (product of empty series) = 1

-2 = 2 (product of series with one element 2)

$$-4 = 2 \cdot 2$$
 (product of series 2,2)

Discrete Mathematics

 $-2000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5; \quad 2001 = 3 \cdot 23 \cdot 29;$ $2002 = 2 \cdot 7 \cdot 11 \cdot 13; \quad 2003 = 2003$

An Application of Primes

- When you visit a secure web site (https:... address, indicated by padlock icon in IE, key icon in Netscape), the browser and web site may be using a technology called *RSA encryption*.
- This *public-key cryptography* scheme involves exchanging *public keys* containing the product *pq* of two random large primes *p* and *q* (a *private key*) which must be kept secret by a given party.
- So, the security of your day-to-day web transactions depends critically on the fact that all known factoring algorithms are intractable!

 Note: There <u>is</u> a tractable *quantum* algorithm for factoring; so if we can ever build big quantum computers, RSA will be insecure.

Greatest Common Divisor

• The *greatest common divisor* gcd(*a*,*b*) of integers *a*,*b* (not both 0) is the largest (most positive) integer *d* that is a divisor both of *a* and of *b*.

 $d = \gcd(a,b) = \max(d: d|a \wedge d|b) \Leftrightarrow$ $d|a \wedge d|b \wedge \forall e \in \mathbb{Z}, (e|a \wedge e|b) \rightarrow d \ge e$

Example: gcd(24,36)=?
Positive common divisors: 1,2,3,4,6,12...
Greatest is 12.

(c)2001-2002, Michael P. Frank § 3.5 – Primes and Greatest Common Divisors

Relative Primality

- Integers a and b are called *relatively prime* or *coprime* iff their gcd = 1.
 - Example: Neither 21 and 10 are prime, but they are *coprime*. $21=3\cdot7$ and $10=2\cdot5$, so they have no common factors > 1, so their gcd = 1.
- A set of integers {a₁,a₂,...} is (pairwise) relatively prime if all pairs a_i, a_j, i≠j, are relatively prime.

(c)2001-2002, Michael P. Frank § 3.5 – Primes and Greatest Common Divisors

Least Common Multiple

lcm(a,b) of positive integers a, b, is the smallest positive integer that is a multiple both of a and of b. E.g. lcm(6,10)=30

 $m = \operatorname{lcm}(a,b) = \min(m:a|m \wedge b|m) \Leftrightarrow$ $a|m \wedge b|m \wedge \forall n \in \mathbb{Z}: (a|n \wedge b|n) \to (m \leq n)$

• If the prime factorizations are written as $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then the LCM is given by $lcm(a,b) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$.

(c)2001-2002, Michael P. Frank § 3.5 – Primes and Greatest Common Divisors

by Mingfu LI, CGUEE

§3.6: Integers and Algorithms

(c)2001-2002, Michael P. Frank

§ 3.6 – Integers and Algorithms

Integers & Algorithms

- Topics:
 - Euclidean algorithm for finding GCD's.
 - Base-b representations of integers.
 - Especially: binary, hexadecimal, octal.
 - Also: Two's complement representation of negative numbers.
 - Algorithms for computer arithmetic:
 - Binary addition, multiplication, division.

Euclid of

Alexandria

325-265 B.C.

95

Euclid's Algorithm for GCD

- Finding GCDs by comparing prime factorizations can be difficult if the prime factors are unknown.
- Euclid discovered: For all integers a, b, gcd(a, b) = gcd((a mod b), b).
- Sort *a*,*b* so that *a*>*b*, and then (given *b*>1)
 (*a* mod *b*) < *a*, so problem is simplified.

Euclid's Algorithm Example

- $gcd(372,164) = gcd(372 \mod 164, 164)$.
 - $-372 \mod 164 = 372 164 \lfloor 372/164 \rfloor = 372 164 \cdot 2 = 372 328 = 44.$
- $gcd(164,44) = gcd(164 \mod 44, 44)$. - 164 mod 44 = 164-44 $\lfloor 164/44 \rfloor = 164-44 \cdot 3 = 164-132$ = 32.
- $gcd(44,32) = gcd(44 \mod 32, 32) = gcd(12, 32) =$ $gcd(32 \mod 12, 12) = gcd(8,12) = gcd(12 \mod 8,$ $8) = gcd(4,8) = gcd(8 \mod 4, 4) = gcd(0,4) = 4.$

Base-*b* number systems

- Ordinarily we write *base*-10 representations of numbers (using digits 0-9).
- 10 isn't special; any base b>1 will work.
- For any positive integers n,b there is a unique sequence $a_k a_{k-1} \dots a_1 a_0$ of digits $a_i < b$ such that $n = \sum_{i=0}^k a_i b^i$ The "base b expansion of n" See module #12 for summation notation.

(c)2001-2002, Michael P. Frank

§ 3.6 – Integers and Algorithms

Addition of Binary Numbers

procedure $add(a_{n-1}...a_0, b_{n-1}...b_0)$: binary representations of non-negative integers a,b) carry := 0for *bitIndex* := 0 to n-1{go through bits} $bitSum := a_{bitIndex} + b_{bitIndex} + carry$ {2-bit sum} $s_{bitIndex} := bitSum \mod 2$ {low bit of sum} $carry := \lfloor bitSum / 2 \rfloor$ {high bit of sum} $s_n := carry$ **return** $s_n \dots s_0$: binary representation of integer s

Two's Complement

- In binary, negative numbers can be conveniently represented using *two*'s complement notation.
- In this scheme, a string of *n* bits can represent any integer *i* such that $-2^{n-1} \le i \le 2^{n-1}$.
- The bit in the highest-order bit-position (n-1) represents a coefficient multiplying -2^{n-1} ;

- The other positions i < n-1 just represent 2^i , as before.

• The negation of any *n*-bit two's complement number $a = a_{n-1} \dots a_0$ is given by $\overline{a_{n-1} \dots a_0} + 1$.

The bitwise logical complement of the *n*-bit string $a_{n-1}...a_0$.

Subtraction of Binary Numbers

procedure subtract($a_{n-1}...a_0, b_{n-1}...b_0$: binary two's complement representations of integers a,b) return $add(a, add(b,1)) \{a + (-b)\}$ This fails if either of the adds causes a carry into or out of the n-1 position, since $2^{n-2}+2^{n-2} \neq -2^{n-1}$, and $-2^{n-1}+(-2^{n-1})=$ -2^n isn't representable!

Multiplication of Binary Numbers

Binary Division with Remainder

procedure div- $mod(a, d \in \mathbb{Z}^+)$ {Quotient & rem. of a/d.} $n := \max(\text{length of } a \text{ in bits, length of } d \text{ in bits})$ for i := n-1 downto 0 if $a \ge d0^i$ then {Can we subtract at this position?} $q_i := 1$ {This bit of quotient is 1.} $a := a - d0^i$ {Subtract to get remainder.} else $q_i := 0$ {This bit of quotient is 0.} r := a**return** q,r $\{q = quotient, r = remainder\}$

(c)2001-2002, Michael P. Frank

§ 3.6 – Integers and Algorithms

§3.7: Applications of Number Theory

(c)2001-2002, Michael P. Frank

§ 3.7 – Applications of Number Theory

Some Useful Results

Lemma 1: If *a*, *b* and *c* are positive integers such that gcd(a, b)=1 and a|bc, then a|c.

Pf: by Theorem 1, 1=sa+tb, $\Rightarrow c=sac+tbc$

Lemma 2: If *p* is a prime and $p|a_1a_2...a_n$, where each a_i is an integer, then $p|a_i$ for some *i*.

(c)2001-2002, Michael P. Frank $\S 3.7 -$ Applications of Number Theory

(c)2001-2002, Michael P. Frank $\S 3.7 -$ Applications of Number Theory

 \S 3.7 – Applications of Number Theory (c)2001-2002, Michael P. Frank

Extended Euclid's Algorithm

EXTENDED EUCLID(m, b)

{
$$(A_1, A_2, A_3)=(1, 0, m);$$
 $(B_1, B_2, B_3)=(0, 1, b);$
while $((B_3!=0) \&\& (B_3!=1))$
{ $Q = A_3 \text{ div } B_3;$
 $(T_1, T_2, T_3)=(A_1-Q^*B_1, A_2-Q^*B_2, A_3-Q^*B_3);$
 $(A_1, A_2, A_3)=(B_1, B_2, B_3);$
 $(B_1, B_2, B_3)=(T_1, T_2, T_3);$ }
if $(B_3 = 0)$ return $gcd(m, b) = A_3;$ no inverse;
if $(B_3 = 1)$ return $gcd(m, b)=1; b^{-1} \mod m = B_2;$ }

Extended Euclid's Algorithm

Example: Find the inverse of 550 mod 1759.						
Q	$\mathbf{A_1}$	A_2	A_3	B ₁	\mathbf{B}_2	B ₃
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

(c)2001-2002, Michael P. Frank $\S 3.7 -$ Applications of Number Theory

Chinese Remainder Theorem

Theorem 4: Let m_1, m_2, \ldots, m_n be pairwise relatively prime positive integers and a_1, a_2, \ldots, a_n arbitrary integers. Then the system $x \equiv a_1 \pmod{m_1},$ $x \equiv a_2 \pmod{m_2}$, $x \equiv a_n \pmod{m_n},$ has a unique solution modulo $m = m_1 m_2 \dots m_n$.

Public Key Cryptography

RSA Cryptosystem: There are a private key and a public key. It is an exponentiation algorithm. (Also known as MIT algorithm) *RSA Encryption*: $C = M^e \mod n$. *RSA Decryption*: $M = C^d \mod n$. where n = pq, p and q are two large primes, and $ed \mod \phi(n) = 1$ with $\phi(n) = (p-1)(q-1)$.

(c)2001-2002, Michael P. Frank $\S 3.7 -$ Applications of Number Theory

by Mingfu LI, CGUEE

§3.8: Matrices

(c)2001-2002, Michael P. Frank

§ 3.8 – Matrices

Applications of Matrices

Tons of applications, including:

- Solving systems of linear equations
- Computer Graphics, Image Processing
- Models within Computational Science & Engineering
- Quantum Mechanics, Quantum Computing
- Many, many more...

Row and Column Order

• The rows in a matrix are usually indexed 1 to *m* from top to bottom. The columns are usually indexed 1 to *n* from left to right. Elements are indexed by row, then column.

$$\mathbf{A} = [a_{i,j}] = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank

Matrices as Functions

• An $m \times n$ matrix $\mathbf{A} = [a_{i,j}]$ of members of a set *S* can be encoded as a partial function $f_{\mathbf{A}} \colon \mathbb{N} \times \mathbb{N} \to S$,

such that for $i < m, j < n, f_A(i, j) = a_{i,j}$.

• By extending the domain over which f_A is defined, various types of infinite and/or multidimensional matrices can be obtained.

•
$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{i,j} + b_{i,j} \end{bmatrix}$$

 $\begin{bmatrix} 2 & 6 \\ 0 & -8 \end{bmatrix} + \begin{bmatrix} 9 & 3 \\ -11 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 0 & -8 \end{bmatrix}$

(c)2001-2002, Michael P. Frank

(c)2001-2002, Michael P. Frank

§ 3.8 – Matrices

(c)2001-2002, Michael P. Frank

 $\S 3.8 - Matrices$

Zero-One Matrices

- Useful for representing other structures.
 - E.g., relations, directed graphs (later in course)
- All elements of a *zero-one* matrix are 0 or 1
 - Representing False & True respectively.
- The *meet* of **A**, **B** (both *m*×*n* zero-one matrices):

$$-\mathbf{A}\wedge\mathbf{B} :\equiv [a_{ij}\wedge b_{ij}] = [a_{ij}b_{ij}]$$

• The *join* of **A**, **B**:

$$-\mathbf{A} \vee \mathbf{B} := [a_{ij} \vee b_{ij}]$$

(c)2001-2002, Michael P. Frank

§ 3.8 – Matrices