Chapter 3:

The Fundamentals: Algorithms,
the Integers, and Matrices
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Algorithms

* The foundation of computer programming.

e Most generally, an algorithm just means a definite
procedure for performing some sort of task.

A computer program 1s simply a description of an
algorithm 1n a language precise enough for a
computer to understand, requiring only operations
the computer already knows how to do.

We say that a program implements (or “is an
implementation of™) its algorithm.
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Programming Languages

 Some common programming languages:

— Newer: Java, C, C++, Visual Basic, JavaScript,
Perl, Tcl, Pascal

— Older: Fortran, Cobol, Lisp, Basic
— Assembly languages, for low-level coding.

* In this class we will use an informal,
Pascal-like “pseudo-code language.

* You should know at least 1 real language!
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Algorithm Example (English)

Task: Given a sequence {a.}=a,,...,a

N2

a;eN, say what 1ts largest element 1s.

Set the value of a temporary variable v
(largest element seen so far) to a,’s value.

Look at the next element a; in the sequence.

If a>v, then re-assign v to the number a..

Repeat previous 2 steps until there are no
more elements 1n the sequence, & return v.
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Executing an Algorithm

 When you start up a piece of software, we
say the program or its algorithm are being
run or executed by the computer.

* (Given a description of an algorithm, you

can also execute it by hand, by working
through all of 1ts steps on paper.

» Before ~WWII, “computer” meant a person
whose job was to run algorithms!
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Executing the Max algorithm

Let {a.$=7,12,3,15,8. Find its maximum...
Setv=a,="7.

Look at next element: a, = 12.

Is a,>v? Yes, so change v to 12.

Look at next element: a, = 3.

Is 3>12? No, leave v alone....
Is 15>127 Yes, v=15...
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Algorithm Characteristics

Some 1mportant features of algorithms:

* [nput. Information or data that comes in.
Output. Information or data that goes out.
Definiteness. Precisely defined.
Correctness. Outputs correctly relate to inputs.
Finiteness. Won’t take forever to describe or run.
Effectiveness. Individual steps are all do-able.
Generality. Works for many possible inputs.

Efficiency. Takes little time & memory to run.
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procedure procname(arg: type)

» Declares that the following text defines a
procedure named procname that takes
inputs (arguments) named arg which are
data objects of the type type.

— Example:
procedure maximum(L: list of integers)
[statements defining maximum...]
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variable - = expression

* An assignment statement evaluates the
expression expression, then reassigns the
variable variable to the value that results.

— Example:
v = 3x+7 (If x 1s 2, changes v to 13.)

 In pseudocode (but not real code), the
expression might be informal:

— x - = the largest integer 1n the list L
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Informal statement

* Sometimes we may write a statement as an
informal English imperative, if the meaning
1s still clear and precise: “swap x and )”

» Keep in mind that real programming

languages never allow this.

 When we ask for an algorithm to do so-and-
so, writing “Do so-and-so” 1sn’t enough!

— Break down algorithm into detailed steps.
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begin statements end

* Groups a sequence of ||+ Allows sequence to be
statements together: used like a single
Degin statement.

statement 1 * Might be used:

statement 2 — After a procedure
declaration.

statement n — In an if statement after
end then or else.

— In the body of a for or
while loop.
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* Not executed (does nothing).

* Natural-language text explaining some
aspect of the procedure to human readers.

» Also called a remark in some real
programming languages.
« Example:

— {Note that v 1s the largest integer seen so far.}
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If condition then statement

» Evaluate the propositional expression
condition.

* If the resulting truth value 1s true, then
execute the statement statement; otherwise,

just skip on ahead to the next statement.

e Variant: If cond then stmtl else stmit2
Like before, but iff truth value 1s false,
executes stmt2.
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while condition statement

» Evaluate the propositional expression
condition.

e If the resulting value 1s true, then execute
statement.

» Continue repeating the above two actions
over and over until finally the condition
evaluates to false; then go on to the next
statement.
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while condition statement

 Also equivalent to infinite nested Ifs, like so:
If condition
begin
statement
If condition

begin

statement

...(continue infinite nested if ’s)
end

end
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Initial 1s an 1nteger expression.

Final 1s another integer expression.

Repeatedly execute stmt, first with variable
var - = initial, then with var := initial+1,
then with var - = initial+2, etc., then finally
with var - = final.

What happens 1if stmt changes the value that
initial or final evaluates to?
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* For can be exactly defined in terms of
while, like so:

var -=initial

while var < final
begin
stmt
var 2=var+ 1

end

end
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procedure(arsument)

* A procedure call statement invokes the
named procedure, giving 1t as 1ts input the
value of the argument expression.

e Various real programming languages refer

to procedures as functions (since the
procedure call notation works similarly to
function application f(x)), or as subroutines,
subprograms, or methods.

(¢)2001-2002, Michael P. Frank § 3.1 — Algorithms 20



Max procedure 1in pseudocode

procedure max(a,, a, ..., a,: integers)
v 2=a, {largest element so far}
fori z=2ton {go thru rest of elems}

If a,>vthenv :=a, {found bigger?}

{at this point v’s value 1s the same as
the largest integer 1n the list}

return v
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Another example task

* Problem of searching an ordered list.

— G1ven a list L of n elements that are sorted into
a definite order (e.g., numeric, alphabetical),

— And given a particular element x,

— Determine whether x appears 1n the list,
— and 1f so, return 1ts index (position) 1n the list.

* Problem occurs often in many contexts.
» Let’s find an efficient algorithm!
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Search alg. #1: Linear Search

procedure linear search
(x: integer, a,, a,, ..., a,: distinct integers)
A

while i <n Ax#a)

[ i=i+1
If i <nthen location =i

else location ==
return location {index or 0 if not found}
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Search alg. #2: Binary Search

» Basic 1dea: On each step, look at the middle
element of the remaining list to eliminate
half of 1t, and quickly zero in on the desired
element.

(¢)2001-2002, Michael P. Frank § 3.1 — Algorithms 2



Search alg. #2: Binary Search

procedure binary search
(x:nteger, a,, a,, ..., a,: distinct integers)
i 2=1 {left endpoint of search interval}
Jj -=n {nght endpoint of search interval}
while i<j begin {while interval has >1 item}

m 2=|(i+)/2] {midpoint}

If x>a, theni z=m+1elsej :=m
end
If x = a, then location -=ielse location =0
return location
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Sorting alg. : Bubble Sort

procedure bubblesort(a,, a,, ..., a,)

fori :=1 ton-1
forj :=1 ton-i

If a>a,,, then interchange a;and ;. |

{a,, a,, ..., a, 1S In Increasing order}
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Sorting alg. : Insertion Sort

procedure insertionsort(a,, a,, ..., a,)
forj :=2 ton
begin
A
while a;> a,
[ 2=+l

m -—Cl]

for k = 0toj-i-1
Ay == a1
a. >=m
end {a,,a, ..., a, are sorted}
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Greedy Change-Making Alg.

procedure change(c,, ¢5, ..., C,.: ¢;> > ...>C, s )
fori:=1 tor
while n > ¢,
begin

add a coin with value ¢; to the change

n .= n-c;
end
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Practice exercises

» 3.1.3: Devise an algorithm that finds the
sum of all the integers 1n a list. [2 min]

 procedure sum(a,, a, ..., a,: integers)
s 1= {sum of elems so far}

fori z=1ton {go thru all elems}

s 2= s+a; {add current item}
{at this point s 1s the sum of all items}
return s
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§3.2: The Growth of Functions
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Orders of Growth

* For functions over numbers, we often need
to know a rough measure of Zow fast a
function grows.

e If (x) 1s faster growing than g(x), then f(x)

always eventually becomes larger than g(x)
in the limit (for large enough values of x).

» Useful 1n engineering for showing that one
design scales better or worse than another.
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Orders of Growth - Motivation

* Suppose you are designing a web site to
process user data (e.g., financial records).

* Suppose database program A takes
fA(n)=30n+8 microseconds to process any n

records, while program B takes f,(n)=n’+1
microseconds to process the n records.

* Which program do you choose, knowing
you’ll want to support millions of users?
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Visualizing Orders of Growth

* On a graph, as
you go to the
right, a faster
growing

FA(n)=30n+8

function
eventually
becomes
larger... Increasing n —>

Value of function —»
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Concept of order of growth

* We say f,(n)=30n+8 1s order n, or O(n).
It 1s, at most, roughly proportional to n.

* fo(n)=n*+1is order n?, or O(n?). Itis
roughly proportional to ».

« Any O(n?) function is faster-growing than
any O(n) function.

» For large numbers of user records, the
O(n?) function will always take more time.
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Definition: O(g), at most order g

Let g be any function R—>R.

* Define “at most order g”, written O(g), to
be: {fR—R | Jc,k: Vx>k: f(x) < cg(x)}.

— “Beyond some point 4, function f1s at most a

constant ¢ times g (i.e., proportional to g).”

* “f1is at most order g”, or “fi1s O(g)”, or
“=0(g)” all just mean that fe O(g).

* Sometimes the phrase “at most” 1s omitted.
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Points about the definition

* Note that f1s O(g) so long as any values of
¢ and k exist that satisty the definition.

« But: The particular ¢, &, values that make
the statement true are nof unique: Any
larger value of ¢ and/or k will also work.

* You are not required to find the smallest ¢
and k values that work. (Indeed, in some
cases, there may be no smallest values!)

However, you should prove that the values you choose do work.
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“Bi1g-O” Proof Examples

* Show that 30n+8 1s O(n).
— Show 3¢, k: Vn>k: 30n+8 < ¢n.

« Show that n°+1 is O(n?).

— Show dc, k: Vn>k: n*+1 < en?.
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B1g-O example, graphically

* Note 30n+8 1sn’t
less than n
anywhere (n>0).

It 1sn’t even
less than 31n
everywhere.

But 1t is less than

31n everywhere to .
the right of n=8. Increasing n —>

-
o
=
Q
-
=
€
o
Q
=
<
=
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Useful Facts about Big O

* Big O, as a relation, 1s transitive:
fe0(g) A geO(h) — feO(h)

* O with constant multiples, roots, and logs...
V f(in (1)) & constants a,beR, with >0,

af, 1, and (log, /)¢ are all O(f).

 Sums of functions:
If g€ O(f) and 2 O(f), then g+heO(f).
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More Bi1g-O facts

e V>0, O(cf)=0(f+c)=0(f—c)=0(f)

* /1€0(g)) A ,€0(g,) —
- 1./, €0(g,2,)
— it/ €0(g,7,)

= O(max(g).g,))
=0(g) 1f g,€0(gy) (Very useful!)
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Orders of Growth (83.2) - So Far

* For any g:R—R, “at most order g”,
O(g) = {f/R->R | Jc,k Vaxk |[fix)] < [eg(x)]}

— Often, one deals only with positive functions
and can 1gnore absolute value symbols.

* “feO(g)” often written “f1s O(g)”
or “#=0(g)".

— The latter form 1s an 1nstance of a more general
convention...
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Order-of-Growth Expressions

* “O(f)” when used as a term 1n an arithmetic
expression means: “some function f such

that fe O(f)”.
e E.g: “x*+0O(x)” means “x* plus some

function that 1s O(x)”.

* Formally, you can think of any such
expression as denoting a set of functions:

“HO)” = {g | IfeO0): g(x)= x*4fx)}
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Order of Growth Equations

» Suppose £, and E, are order-of-growth
expressions corresponding to the sets of
functions S and 7, respectively.

* Then the “equation” E,=E, really means

VfeS, dgeT: f=¢
or simply ScT.
« Example: x?+ O(x) = O(x?) means
Ve O(x): AgeO(x?): x*+f(x)=g(x)
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Useful Facts about Big O

» V f,g & constants a,beR, with 56>0,
— af = O(f); (e.g. 3x*= O(x?))
— f+O(f) = O(f); (e.g. x*+x = 0O(x?))

* Also, 1f /=Q2(x) (at least order 1), then:
= A= 0(); (e.g. x7'=0O(x))

~ (log, 1) = O(f). (e.g. log x = O(x))
- g=0(fg) (e.g. x = O(x log x))
— fg # 0O(2) (e.g. x log x # O(x))
— a=0(f) (e.g. 3 =0(x))
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Definition: ©(g), exactly order g

e If feO(g) and geO(f) then we say “g and f
are of the same order” or “f'is (exactly)
order g” and write fe ®(g).

» Another equivalent definition:
0O(g) = f/R-R]|
de 6,k Vx=k: e g(x)|s[Ax)|<|e,g(x)] §

» “Everywhere beyond some point £, f(x) lies
in between two multiples of g(x).”
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Rules for ®

» Mostly like rules for O( ), except:

» VY 1,6>0 & constants a,beR, with 5>0,
af € O(f), but < Same as with O.
f & O(fe) unless g=0O(1) <« Unlike O.

If] 't ¢ O(f), and « Unlike with O.
(log, |f])c & O(f). <« Unlike with O.

* The functions 1n the latter two cases we say
are strictly of lower order than O(f).
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® example

e Determine whether: ( L

Zij;@)(nz)

e Solution: im1
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Other Order-of-Growth Relations

* Q(g) = /1g€0(f);

“The functions that are af least order g.”

o(g) = Y| V>0 3k Vx>k : [f(x)| < [cg(x)[}
“The functions that are strictly lower order

than g.” o(g) < O(g) — O(g).
o(g) = | Ve>0 Ik Vx>k : [egx)] < [f(x)[}
“The functions that are strictly higher order

than g.” o(g) < (g) — O(g).
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Relations Between the Relations

* Subset relations between order-of-growth
sets.

O( ) Q(f )

oo
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Why o(f )cO(x)—0(x)

» A function that 1s O(x), but neither o(x) nor
O(x): "

*
&
*
*
*
*
*
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Strict Ordering of Functions

 Temporarily let’s write f/<g to mean feo(g),

f~g to mean feO(g)
@,

 Note that f< g lim

e g(x)

* Let &~1. Then the following are true:
1 <log log n <logn ~log, n <logkn
<n"<n<nlogn<n*<k'<n!'<n"..
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Review: Growth of Functions (§3.2)

Definitions of order-of-growth sets, Vg:R—R
* O(g)={f|d >0k Vx>k |f(x)| <|cg(x)|}
o(g)= {f| V>0 3k Vx>k [f(x)| <|cg(x)|}

Q(g) = /1 g2€0(f)}
(g) = {f]| geo(f)}
®(g) = O(g) N Q(g)

(¢)2001-2002, Michael P. Frank § 3.2 — The Growth of Functions 52



§3.3: Complexity of Algorithms
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What 1s complexity?

* The word complexity has a variety of technical
meanings in different fields.

There 1s a field of complex systems, which studies
complicated, difficult-to-analyze non-linear and
chaotic natural & artificial systems.

Another concept: Informational complexity: the
amount of information needed to completely
describe an object. (An active research field.)

 We will study algorithmic complexity.
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Algorithmic Complexity

» The algorithmic complexity of a
computation 1s some measure of how
difficult 1t 1s to perform the computation.

* Measures some aspect of cost of

computation (in a general sense of cost).

e Common complexity measures:

— “Space” complexity: # of memory bits req’d

(€)2001-2002, Michael P. Frank § 3.3 — Complexity of Algorithms 55



* Another, increasingly important measure of
complexity for computing 1s energy
complexity - How much total energy 1s used
in performing the computation.

* Motivations: Battery life, electricity cost...

* [ develop reversible circuits & algorithms
that recycle energy, trading off energy
complexity for spacetime complexity.
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Complexity Depends on Input

* Most algorithms have different complexities
for inputs of different sizes. (£.g. searching
a long list takes more time than searching a
short one.)

» Therefore, complexity 1s usually expressed
as a function of input length.

» This function usually gives the complexity
for the worst-case iput of any given length.
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Complexity & Orders of Growth

* Suppose algorithm A has worst-case time
complexity (w.c.t.c., or just time) f(n) for
inputs of length n, while algorithm B (for
the same task) takes time g(n).

» Suppose that fe ®(g), also written f > g .

 Which algorithm will be fastest on all
sufficiently-large, worst-case inputs?
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Example 1: Max algorithm

» Problem: Find the simplest form of the
exact order of growth (®) of the worst-case
time complexity (w.c.t.c.) of the max
algorithm, assuming that each line of code

takes some constant time every time 1t 1s
executed (with possibly different times for
different lines of code).
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Complexity analysis of max

procedure max(a,, a, ..., a,: integers)

Vv .=a l .
1 1 Times for

fori z=2ton t, each

: o execution
Ifa,>vthenv :=gq, b ofeach

return v t, line.

What’s an expression for the exact total
worst-case time? (Not 1ts order of growth.)
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Complexity analysis, cont.

procedure max(a,, a, ..., a,: integers)

V-= 4 tl Times for
fori z=2ton t, each
Ifa,>vthenv :=aq, L ei;cel:;ﬁn
return v t line.
w.c.t.C.:

t(n)=t + (Zn:(tz + t3)j +1,

(¢)2001-2002, Michael P. Frank § 3.3 — Complexity of Algorithms 61




Complexity analysis, cont.

Now, what 1s the simplest form of the exact
(®) order of growth of #(n)?

t(n)=t + (an(tz + t3)\ +1,
i=2 y,

=01)+ (Zn: @(l)j +0O()=061)+(n-1)O(1)

= O(1)+O(n)O(1) = O(1) + O(n) = O(n)
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Example 2: Linear Search

procedure linear search (x: integer, a,, a,,
..., a,: distinct integers)

[ 1=

while i <n Ax#a)
I c=1+1
If i <nthen location =i

else location - =
return location
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Linear search analysis

* Worst case time complexity order:

t(n) =t +(Z(r2 +t3)j+t4 +1,+t, =0O(n)
i=1
e Best case:
t(n)=t +t,+t,+t, =0()

* Average case, 1f 1tem 1s present:

nl/2

t(n) =t +(Z(r2 +t3)j+t4 +1,+t, =0O(n)

i=1
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Review §3.3: Complexity

Algorithmic complexity = cost of computation.

Focus on time complexity (space & energy are
also important.)

Characterize complexity as a function of input
size: Worst-case, best-case, average-case.

Use orders of growth notation to concisely
summarize growth properties of complexity fns.
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Example 3: Binary Search

procedure binary search (x:integer, a,, a,, ..., a,:
distinct integers)
i1=1 Key question:
. e O(1) . .
J -—n How many loop iterations?
while i<j begin

If x>a, theni z=m+1elsej :=m

end
If x = a; then location == i else location =0

. O(1)
return location
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Binary search analysis

Suppose n=2k.
Original range from i=1 to j=n contains n elems.
Each iteration: Size j—+1 of range 1s cut 1n half.

Loop terminates when size of range is 1=2° (i=j).

Therefore, number of iterations 1s k = log,n
= O(log, n)= O(log n)

Even for n#2* (not an integral power of 2),
time complexity 1s still ®(log, n) = O(log n).
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Names for some orders of growth

Constant

Logarithmic (same order V¢)

(With ¢
a constant.)

Polylogarithmic
Linear
Polynomial

Exponential

Factorial

(€)2001-2002, Michael P. Frank § 3.3 — Complexity of Algorithms 68



Problem Complexity

* The complexity of a computational problem
or task 1s (the order of growth of) the
complexity of the algorithm with the lowest
order of growth of complexity for solving
that problem or performing that task.

» E.g. the problem of searching an ordered
list has at most logarithmic time
complexity. (Complexity is O(log n).)
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Tractable vs. intractable

e A problem or algorithm with at most polynomial
time complexity 1s considered fractable (or
feasible). P 1s the set of all tractable problems.

* A problem or algorithm that has more than
polynomial complexity 1s considered intractable

(or infeasible).

« Note that n':000.000 ig fechnically tractable, but
really impossible. nlogloglog ig technically
intractable, but easy. Such cases are rare though.
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Unsolvable problems

e Turing discovered in the 1930’s that there
are problems unsolvable by any algorithm.

— Or equivalently, there are undecidable yes/no
questions, and uncomputable functions.

« Example: the halting problem.

— Given an arbitrary algorithm and 1its mput, will
that algorithm eventually halt, or will 1t
continue forever 1n an “infinite loop?”
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* NP 1s the set of problems for which there
exi1sts a tractable algorithm for checking
solutions to see 1f they are correct.

« We know PcNP, but the most famous

unproven conjecture in computer science 1s
that this inclusion 1s proper (i.e., that
PcNP rather than P=NP).

* Whoever first proves it will be famous!
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Computer Time Examples

(1.25 bytes) (125 kB)

Assume time

#ops(n) |n=10 n=10° — 1 10-9
lo;n |33ns  199ns | .08
: . — second) per
n logs n|33 ns 19.9 ms gii’epio,f flﬁ
n° 100 ns 16 m40 s ’
o 1004 us | 103010043 fops a

: 2 Gyr function of »
- 63 s Ouch! as shown.
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Things to Know

» Definitions of algorithmic complexity, time
complexity, worst-case complexity; names
of orders of growth of complexity.

 How to analyze the worst case, best case, or
average case order of growth of time
complexity for simple algorithms.
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§3.4: The Integers and Division
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The Integers and Division

» Of course you already know what the
integers are, and what division i1s...

» But: There are some specific notations,
terminology, and theorems associated with

these concepts which you may not know.

» These form the basics of number theory.

— Vital in many important algorithms today (hash
functions, cryptography, digital signatures).
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Divides, Factor, Multiple

Let a,beZ with a#0.

alb =“a divides b” .= *“dcel: b=ac”
“There 1s an 1integer ¢ such that ¢ times a
equals b.”

— Example: 3|-12 < True, but 3|7 < False.

Iff a divides b, then we say a 1s a factor or a
divisor of b, and b 1s a multiple of a.

“biseven” := 2|b. Is 0 even? Is —47
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Facts re: the Divides Relation

e Ya,b,c € Z:
1. al0
2.(alb Analc) > a| (b+c)
3.alb — al|bc

4. (a|lb A blc) — alc

* Proof of (2): a|b means there is an s sucl
b=as, and a|c means that there is a ¢ such tt
c=at, so b+c = as+at = a(s+t), so a|(b+c) al
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More Detailed Version of Proof

Show Va,b,c € Z: (alb A a|lc) > a | (b + ¢).
Let a, b, ¢ be any integers such that a|b and
alc, and show that a | (b + ¢).

By defn. of |, we know ds: b=as, and

dt: c=at. Lets, t, be such integers.

Then b+c = as + at = a(s+1), so
du: b+c=au, namely u=s+t. Thus a|(b+c).
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The Division “Algorithm™

» Really just a theorem, not an algorithm...
— The name 1s used here for historical reasons.

» For any integer dividend a and divisor
d =+ 0, there 1s a unique integer quotient g

and remainder reN>a=dg +rand 0 <r<
|d | . (such that)

» Ya,del, d>0: 3\q,reZ: 0<r<|d|, a=dqg+r.
 We can find ¢ and r by: q=_a/dJ, r=a—qd.
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The mod operator

An 1nteger “division remainder” operator.

Let a,deZ with d>1. Then a mod d
denotes the remainder r from the division
“algorithm” with dividend a and divisor d;

i.e. the remainder when a 1s divided by d.
(Using e.g. long division.)

We can compute (¢ mod d) by: a — d| ald ]
In C programming language, “%’” = mod.
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Modular Congruence

Let Z={neZ | n>0}, the positive integers.
Letabeld, mel".

Then a is congruent to b modulo m, written
“a=b (mod m)”, ift m | a—b .

Also equivalent to: (a—b) mod m = 0.

(Note: this 1s a different use of “=" than the
meaning “i1s defined as” I’ve used before.)
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Spiral Visualization of mod

Example shown:
modulo-5
arithmetic
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Useful Congruence Theorems

e Leta,beld, meZ’. Then:
a=b (mod m) < dke’Z a=b+km.
e Leta,b,cdel, meZ". Then if
a=b (mod m) and c=d (mod m), then:

« a+c = b+d (mod m), and
* ac = bd (mod m)
« Hash Function @ A(k)=k mod m
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§3.5: Primes and

Greatest Common Divisors
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Prime Numbers

* An integer p>1 1s prime iff 1t 1s not the
product of any two integers greater than 1:
p>1 A—da,beN: a>1, b>1, ab=p.

* The only positive factors of a prime p are 1

and p itself. Some primes: 2,3,5,7,11,13...

* Non-prime integers greater than 1 are called
composite, because they can be composed
by multiplying two integers greater than 1.
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Fundamental Theorem of Arithmetic
(e— R E- A G KO HZA H O —

» Every positivd integer has a unique
representationlas the product of a non-
decreasing series of zero or more primes.

— 1 = (product of empty series) = 1

— 2 =2 (product of series with one element 2)

— 4 = 2-2 (product of series 2,2)

—2000=2-2-2-2-5-5-5; 2001 =3-23-29;
2002 =2-7-11-13; 2003 =2003
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An Application of Primes

* When you visit a secure web site (https:...
address, indicated by padlock icon in IE, key 1con
in Netscape), the browser and web site may be
using a technology called RSA4 encryption.

This public-key cryptography scheme involves
exchanging public keys containing the product pg
of two random large primes p and ¢ (a private
key) which must be kept secret by a given party.

So, the security of your day-to-day web
transactions depends critically on the fact that all

known factoring algorithms are intractable!

— Note: There is a tractable quantum algorithm for factoring; so if
we can ever build big quantum computers, RSA will be insecure.
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Greatest Common Divisor

» The greatest common divisor gcd(a,b) of integers
a,b (not both 0) 1s the largest (most positive)
integer d that 1s a divisor both of @ and of b.

d = gcd(a,b) = max(d: dla A d|b)
dlandbnVeel, (elanelb)—d=>e

« Example: gcd(24,36)=?
Positive common divisors: 1,2,3,4,6,12...
Greatest 1s 12.
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GCD shortcut

 If the prime factorizations are written as
b

a=p{'py..p, and b=p'py..p;,
then the GCD 1s given by:

min(al 9b1 ) min(aZ 9b2 ) min(an 9bn )

ged(a,b) = p, P 7

« Example:
— a=84=2-2-3"7 =22-31.71
— b=96=2-2-2-2-2-3 =2>-31.70
— gcd(84,96) =
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Relative Primality

 Integers a and b are called relatively prime
or coprime 1iff their gcd = 1.
— Example: Neither 21 and 10 are prime, but they

are coprime. 21=3-7 and 10=2-5, so they have
no common factors > 1, so their ged = 1.

* A set of integers {a,,a,,...} 18 (pairwise)
relatively prime 1t all pairs a,, a,, i#j, are

l

relatively prime.
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Least Common Multiple

* lecm(a,b) of positive integers a, b, 1s the smallest
positive integer that is a multiple both of @ and of
b. E.g. lcm(6,10)=30

m = lecm(a,b) = min(m: alm A blm) <
alm A blm A Ynel: (ajn A bln) — (m <n)

e If the prime factorizations are Wri[}ten as

al a2 Cln — 1 b2 bl’l
a=p'py..p;mand b=p/'p,...p"
then the LCM is given by

max(a;,by)  max(ay,b,) max(a, .b,)

lem(a,b) = p, P> ... D,
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§3.6: Integers and Algorithms
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Integers & Algorithms

* Topics:
— Euclidean algorithm for finding GCD’s.
— Base-b representations of integers.

» Especially: binary, hexadecimal, octal.

» Also: Two’s complement representation of negative
numbers.

— Algorithms for computer arithmetic:

 Binary addition, multiplication, division.
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Euclid’s Algorithm for GCD i

* Finding GCDs by comparing prime
factorizations can be difficult if the
prime factors are unknown.

* Euclid discovered: For all integers a, b,| Euclidof

Alexandria

gcd(a, b) = ged((a mod b), b). 325-265 B.C.

» Sort a,b so that a>b, and then (given 5>1)
(a mod b) < a, so problem 1s simplified.
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Euclid’s Algorithm Example

e 0cd(372,164) = gcd(372 mod 164, 164).

— 372 mod 164 = 372-164.372/164] = 372-164-2 =
372-328 = 44.

« gcd(164,44) = gcd(164 mod 44, 44).
— 164 mod 44 = 164—44] 164/44 | = 164—44-3 = 164—132

= 32.
e gcd(44,32) = gcd(44 mod 32, 32) = ged(12, 32) =
gcd(32 mod 12, 12) = ged(8,12) = ged(12 mod 8,
8) =gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4.
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Euclid’s Algorithm Pseudocode

procedure gcd(a, b: positive integers)
while b # 0

r=amodb; a=>b; b:=r

return a Sorting inputs not needed b/c order
will be reversed each iteration.

Fast! Number of while loop iterations
turns out to be O(log(max(a,b))).
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Base-b number systems

* Ordinarily we write base-10 representations
of numbers (using digits 0-9).
* 10 1sn’t special; any base 56>1 will work.

» For any positive integers n,b there 1s a
unique sequence a; q; ... a,a,of digits a,;<b
such that k . A The “base b

n = Z Clibl \ expansion
i=0 of n”
See module #12 for summation notation.
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Particular Bases of Interest

Used only because

» Base h=10 (decimal): we have 10 fingers
10 digits: 0,1,2,3,4,5,6,7,8,9. Used
e Base h=2 (blnary) - internally 1n

2 digits: 0,1. (“Bits”="binary digits.”)| 2!l modem

computers
» Base b=8 (octal): S -
8 digits: 0,1,2,3,4:5;6,7 Octal digits correspond to

groups of 3 bits
» Base b=16 (hexadecimal):
16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,EF

Hex digits give groups of 4 bits
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Converting to Base b

lgorithm, informally stated)

* To convert any integer n to any base b>1:

* To find the value of the rightmost (lowest-
order) digit, simply compute » mod b.

« Now replace n with the quotient | n/b_].

« Repeat above two steps to find subsequent
digits, until n 1s gone (=0).

Exercise for student: Write this out in pseudocode...
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Addition of Binary Numbers

procedure add(a,_,...ay, b,_,...b,: binary
representations of non-negative integers a,b)
carry =0
for bitindex = 0 to n—1 {go through bits}
bitSum = abit[ndex_l_bbitlndex_l_carm/ {2'b1t Sum}

Spitinder -= DItSum mod 2 {low bit of sum}
carry = | bitSum / 2] {high bit of sum}
S, = carry
return s,,...s,: binary representation of integer s
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Two’s Complement

In binary, negative numbers can be conveniently
represented using two’s complement notation.

In this scheme, a string of n bits can represent any
integer i such that —271 <; <271,
The bit in the highest-order bit-position (n—1)
represents a coefficient multiplying —271;

— The other positions i < n—1 just represent 2/, as before.

The negation of any n-bit two’s complement
numbera =a, ,...a,1s givenbya,_,...a, + 1.

The bitwise logical complement of the n-bit string a,,_,...q,.
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Correctness of Negation Algorithm

* Theorem: For an integer a represented in
two’s complement notation, —a =a + 1.

e Proof:
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Subtraction of Binary Numbers

procedure subtract(a,_,...a,, b b,

n_l-..

binary two’s complement representations of
integers a,b)

return add(a, add(®,1)) {a+ (=b)}

This fails if either of the adds causes a carry
into or out of the n—1 position, since
2n—2_|_2n—2 = _2n—1, and _2n—1 + (_2n—1) —
—2" 1sn’t representable!
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Multiplication of Binary Numbers

procedure multiply(a,_,...ay, b,_,...by:

binary representations of a,bN)

product =0
fori:=0ton—1
If b, =1 then
product = add(a,_, .. .aog)i, product)
return product i extra 0-bits
appended after
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Binary Division with Remainder

procedure div-mod(a,d € Z*) {Quotient & rem. of a/d.}
n = max(length of a in bits, length of d 1n bits)
for i :==n—1 downto 0
If a >d0'then  {Can we subtract at this position?}
q; =1 { This bit of quotient 1s 1.}
a:=a—d0 {Subtract to get remainder.}
else
g, =0 { This bit of quotient 1s 0.}
ri=a

return q,r {g = quotient, r = remainder }
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§3.7: Applications of Number

Theory
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Some Useful Results

Theorem 1: If a and b are positive integers,
then there exist integers s and ¢ such that
ogcd(a, b)=sa+tb.

Example: Express gcd(252, 198) as a linear

combination of 252 and 198.
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Some Useful Results

Lemma 1: If a, b and ¢ are positive integers such
that gcd(a, b)=1 and albc, then ajc.

Pf: by Theorem 1, 1=sa+tb, = c=sac+tbc

Lemma 2: If p 1s a prime and p|a,a,...a,, where
each a;1s an integer, then p|a; for some i.
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Some Useful Results

Theorem 2: Let m be a positive integer and let a, b

and c be integers. If ac = bc (mod m) and ged(c,
m)=1, then a = b (mod m).

Pf:

Example: 14 = 8 (mod 6), then 7}{4 (mod 6) ?
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Linear Congruences

Theorem 3: If a and m are relatively prime integers
and m > 1, then an inverse of @ modulo m exists.
Furthermore, this inverse is unique modulo m.

Pf:
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Linear Congruences

Example: Find an inverse of 3 modulo 7.

Example: Solve 3x =4 (mod 7).

Sol:

()2001-2002, Michael P. Frank S 3.7 — Applications of Number Theory 112



Extended Euclid’s Algorithm

EXTENDED EUCLID(m, b)
{ (AL A, A)=(1,0,m); (B, By, By)=(0,1,Db);
while ( (B;!=0) && (B;!=1))
{ Q=A;divBj;
(Ty, Ty, T9)=(A-Q*B,;, A,-Q*B,, A-Q*B,) ;

(A, Ay Ag)=(By, By, By) ;
(B1 By Bg)=(Ty, Ty, Tg) 5 }
If (B3 =0) return gcd(m, b) = A;; no inverse ;
If (B;=1) return gcd(m, b)=1; bt mod m=B,;

}
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Extended Euclid’s Algorithm

Example: Find the inverse of 550 mod 1759.
A,  Ag B, B,
0 1759 0

106 —-339
106 -339 4 111 355
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Chinese Remainder Theorem

Theorem 4: Let m, m,,..., m, be pairwise
relatively prime positive integers and a, a,,..., a
arbitrary integers. Then the system

x =a, (modm,),

n

x=a, (modm,),

x=a, (modm),

has a unique solution modulo m =mm,... m,, .
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Fermat’s Little Theorem

Theorem 5: If p 1s a prime positive integers and a
1s an integer not divisible by p, then

a’” =1(mod p).

Furthermore, for every integer @ we have
a” =a (mod p).
Example: The integer 341 1s a pseudoprime to the

base 2 because it is composite (11-31) and 2340 =1
(mod 341).
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Public Key Cryptography

RSA Cryptosystem: There are a private key and a
public key. It 1s an exponentiation algorithm.
(Also known as MIT algorithm)

RSA Encryption: C =M ° mod n.

RSA Decryption: M = C ¢ mod n.

where n = pgq, p and g are two large primes, and
ed mod ¢(n) =1 with ¢(n) = (p-1)(g-1).
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Public Key Cryptography

Example: Letn =15, e =3, encrypt M =7.

Example: Encrypt the message STOP with p =43,

g =59, withe=13..

Sol.:
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§3.8: Matrices
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Matrices

A matrix (say MAY-trix) 1s a rectan- [
gular array of objects (usually numbers).

our

* An mxn (“m by n”’) matrix has exactly m |meaning!
horizontal rows, and »n vertical columns.

e Plural of matrix = matrices |> ° 20
(say MAY-trih-sees) S
. 7 0] ..
* An nxn matrix 1s called a squuare matrix,

whose order 1s n.

Note: The singular form
of “matrices” is “matrix,”
§ 3.8 — Matrices not “MAY -trih-see”!
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Applications of Matrices

Tons of applications, including:
* Solving systems of linear equations

» Computer Graphics, Image Processing

* Models within Computational Science &
Engineering
Quantum Mechanics, Quantum Computing

Many, many more...
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Matrix Equality

* Two matrices A and B are equal iff they
have the same number of rows, the same
number of columns, and all corresponding
elements are equal.

3 2¢3 2 0
-1 6| |[-1 6 0
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Row and Column Order

* The rows in a matrix are usually indexed 1
to m from top to bottom. The columns are
usually indexed 1 to n from left to right.
Elements are indexed by row, then column.
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Matrices as Functions

* An mxn matrix A = [a,;] of members of a
set S can be encoded as a partial function
fa: NxN—§,
such that for i<m, j<n, fo(i, ) = a; .

* By extending the domain over which f, 1s
defined, various types of infinite and/or
multidimensional matrices can be obtained.
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* The sum A+B of two matrices A, B (which
must have the same number of rows, and
the same number of columns) 1s the matrix
(also with the same shape) given by adding

corresponding elements.

* AtB =[aq, b, ]
o Sl

L
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Matrix Products

o For an mxk matrix A and a kxn matrix B, the
product AB 1s the mxn matrix:

o _
AB=C=[c, 1=|> a,b,,
| (=1 _

« [e., element (i,j) of AB is given by the vector dot
product of the ith row of A and the jth column of
B (considered as vectors).

* Note: Matrix multiplication is not commutative!
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Matrix Product Example

* An example matrix multiplication to
practice 1n class:

01 -1
20 3.
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Identity Matrices

» The identity matrix of order n, |, 1s the
order-n matrix with 1’s along the upper-left
to lower-right diagonal and 0’s everywhere

else. 1 0 --- 0

1ifi=j] [0 1 --- 0

O1ti=j

0 O
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Review: Matrices, so far

Matrix sums and products:
A+B =|a -I-bl.J.] _ _

Ly

k
AB=C=[c, 1=|> a,b,,
| (= _

1

Identity matrix of order #:
|, = [06,], where 6,=1 1f i=j and 6,=0 1f i#/.

n
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Matrix Inverses

* For some (but not all) square matrices A,

there exists a unique multiplicative inverse
Al of A, a matrix such that A 'A =1

 If the inverse exists, 1t 1s unique, and
AlA=AA

« We won’t go into the algorithms for matrix
Inversion...
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Matrix Multiplication Algorithm

procedure matmul(matrices A: mxk, B: kxn)
fori:=1tom }@(m) What’s the ® of its
fOF] —1ton begln}@(n) p time complexity?

} O(1)+ Answer:
O(mnk)

(¢)2001-2002, Michael P. Frank § 3.8 — Matrices 131



Powers of Matrices

If A 1s an nxn square matrix and p=>0, then:
« AP EAAA---A) (A'=1)

N
p times

]2 2 12 1][2 1
. Example. {_1 0 _q 0]{_1 0]{—1 0}
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Matrix Transposition

* If A=[q,;] 1s an mxn matrix, the franspose ot
A (often written A' or A') is the nxm matrix
given by A'=B = [b,] = [a,] (1si<n,1<j<m)

t

Flip \

dCrosSS

diagonal .
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Symmetric Matrices

* A square matrix A 1s symmetric iff A=A".
le,Vijsn:a;=a;.

* Which 1s symmetric?
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Z.ero-One Matrices

Useful for representing other structures.

— E.g., relations, directed graphs (later in course)
All elements of a zero-one matrix are 0 or 1
— Representing False & True respectively.
The meet of A, B (both mxn zero-one matrices):

— AAB = [aij/\b”] = [Clij bij]

g

The join of A, B:
— AvB = [a;vb,]
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Boolean Products

* Let A=[a,;] be an mxk zero-one matrix,
& let B=[b;] be a kxn zero-one matrix,

* The boolean product of A and B 1s like
normal matrix x, but using v instead + 1n

the row-column “vector dot product.”

k
AOB=C=[c;]=|\/a, b,
=1 _
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Boolean Powers

* For a square zero-one matrix A, and any
k>0, the kth Boolean power of A 1s stmply
the Boolean product of & copies of A.

. Alll=
All= AOAD...OA

k times
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