Chapter 3: The Fundamentals: Algorithms, the Integers, and Matrices

(c)2001-2002, Michael P. Frank 1

by Mingfu LI, CGUEE

§**3.1: Algorithms**

(c)2001-2002, Michael P. Frank 2

 $§ 3.1 - Algorithms$

- procedure for performing some sort of task.
- •A computer *program* is simply a description of an algorithm in a language precise enough for a computer to understand, requiring only operations the computer already knows how to do.
- •• We say that a program *implements* (or "is an implementation of") its algorithm.

Programming Languages

- Some common programming languages:
	- **Newer: Java, C, C++, Visual Basic, JavaScript,** Perl, Tcl, Pascal
	- **Older:** Fortran, Cobol, Lisp, Basic Fortran, Cobol, Lisp, Basic
	- Assembly languages, for low-level coding.
- In this class we will use an informal, Pascal -like "*pseudo -code* " language.
- •You should know at least 1 real language!

Algorithm Example (English)

- Task: Given a sequence $\{a_i\} = a_1, \ldots, a_n$ $a_i^{}$ \in **N**, say what its largest element is.
- Set the value of a *temporary variable v* (largest element seen so far) to a_1 's value.
- Look at the next element a_i in the sequence.
- If a_i $\gg v$, then re-assign v to the number a_i .
- Repeat previous 2 steps until there are no more elements in the sequence, & return *v*.

Executing an Algorithm

- When you start up a piece of software, we say the program or its algorithm are being *run or executed by the computer.*
- Given a description of an algorithm, you can also execute it by hand, by working through all of its steps on paper.
- Before ~WWII, "computer" meant a *person* whose job was to run algorithms!

Executing the Max algorithm

- Let $\{a_i\} = 7, 12, 3, 15, 8$. Find its maximum...
- Set $v = a_1 = 7$.
- Look at next element: $a_2 = 12$.
- Is a_2 >*v*? Yes, so change *v* to 12.
- Look at next element: $a_2 = 3$.
- Is $3>12$? No, leave ν alone....
- Is $15 > 12$? Yes, $\nu = 15...$

Algorithm Characteristics

Some important features of algorithms:

- •*Input*. Information or data that comes in.
- •*Output.* Information or data that goes out.
- •*Definiteness.* Precisely defined.
- •*Correctness.* Outputs correctly relate to inputs.
- •• *Finiteness.* Won't take forever to describe or run.
- •• *Effectiveness*. Individual steps are all do-able.
- •*Generality.* Works for many possible inputs.
- •*Efficiency*. Takes little time & memory to run.

procedure *procname* (*arg*: *type*)

• Declares that the following text defines a procedure named *procname* that takes inputs (*arguments*) named *arg* which are data objects of the type *type*.

– Example:

procedure *maximum*(*L*: list of integers) [statements defining *maximum* ...]

•In pseudocode (but not real code), the *expression expression* might be informal: might be informal:

 $-x$: = the largest integer in the list L

Informal statement

- Sometimes we may write a statement as an informal English imperative, if the meaning is still clear and precise: "swap *x* and *y*"
- Keep in mind that real programming languages never allow this.
- When we ask for an algorithm to do so-andso, writing "Do so-and-so " isn't enough!

- Break down algorithm into detailed steps.

if *condition* **then** *statement*

- Evaluate the propositional expression *condition condition*.
- If the resulting truth value is **true**, then execute the statement *statement*; otherwise, just skip on ahead to the next statement.
- Variant: **if** *cond* **then** *stmtl* **else** *stmt2* Like before, but iff truth value is **false**, executes executes *stmt2*.

while *condition statement*

- *Evaluate* the propositional expression *condition condition*.
- If the resulting value is **true**, then execute *statement statement*.
- Continue repeating the above two actions over and over until finally the *condition* evaluates to **false**; then go on to the next statement.

Chap. 3

by Mingfu LI, CGUEE

while *condition statement*

initial or *final* evaluates to?

procedure (*argumen^t*)

- A *procedure call* statement invokes the named *procedure procedure*, giving it as its input the , giving it as its input the value of the *argument* expression.
- Various real programming languages refer to procedures as *functions* (since the procedure call notation works similarly to procedure call notation works similarly to function application $f(x)$), or as *subroutines*, *subprograms subprograms*, or *methods methods*.

Max procedure in pseudocode

procedure $max(a_1, a_2, ..., a_n)$: integers) $v: = a_1$ {largest element so far} **for** i : = 2 **to** n {go thru rest of elems} **if** $a_i > v$ **then** $v := a_i$ {found bigger?} {at this point v 's value is the same as the largest integer in the list $\}$ **return** *v*

Another example task

- Problem of *searching an ordered list*.
	- $-$ Given a list *L* of *n* elements that are sorted into a definite order (*e.g.*, numeric, alphabetical),
	- $-$ And given a particular element x ,
	- $-$ Determine whether x appears in the list,
	- $-$ and if so, return its index (position) in the list.
- Problem occurs often in many contexts.
- Let's find an *efficient* algorithm!

Search alg. #1: Linear Search

procedure procedure *linear search linear search* $(x:$ integer, $a_1, a_2, ..., a_n$: distinct integers) $i:=1$ **while** $(i \leq n \land x \neq a_i)$ *i* :=*i* + 1**if** $i \leq n$ **then** *location* : = *i* **else** *location* : = 0 **return** *location* {index or 0 if not found}

$$
\S~3.1 - \text{Algorithms}
$$

Search alg. #2: Binary Search

procedure procedure *binary search binary search* $(x:\text{integer}, a_1, a_2, ..., a_n:\text{distinct integers})$ $i := 1$ {left endpoint of search interval} j : = *n* {right endpoint of search interval} **while** *i* <*j* **begin** {while interval has >1 item} {while interval has >1 item} $m : = \lfloor (i+j)/2 \rfloor$ {midpoint} **if** $x>a_m$ **then** $i: = m+1$ **else** $j: = m$ **endif** $x = a_i$ **then** *location* : = *i* **else** *location* : = 0 **return** *location location*

$$
\S~3.1 - Algorithms
$$

by Mingfu LI, CGUEE

Sorting alg. : Insertion Sort

 $\bf{procedure}$ insertionsort $(a_1, a_2, ..., a_n)$ **for** *j* := 2 **to** *n* **begin** $i := 1$ **while** $a_j > a_i$ $i : = i + 1$ *m* := *aj* for k : = 0 to j *- i -*1 a_{j-k} : = a_{j-k-1} a_i : = m **end** ${a_1, a_2, ..., a_n}$ are sorted}

§**3.2: The Growth of Functions**

(c)2001-2002, Michael P. Frank \S 3.2 – The Growth of Functions 30

- For functions over numbers, we often need to know a rough measure of *how fast a function grows function grows*.
- If $f(x)$ is *faster growing* than $g(x)$, then $f(x)$ always eventually becomes larger than $g(x)$ *in the limit* (for large enough values of x).
- Useful in engineering for showing that one design *scales* better or worse than another.

by Mingfu LI, CGUEE

Orders of Growth - Motivation

- Suppose you are designing a web site to process user data (e.g., financial records).
- Suppose database program A takes $f_A(n)=30n+8$ microseconds to process any *n* records, while program B takes $f_B(n)=n^2+1$ microseconds to process the *n* records.
- \bullet Which program do you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

• On a graph, as you go to the Value of function \rightarrow $f_A(n)=30n+8$ Value of function right, a faster growing growing function $f_{\rm B}(n)=n^2+1$ eventually becomes larger... Increasing $n \rightarrow$

(c)2001-2002, Michael P. Frank \S 3.2 – The Growth of Functions 33

Concept of order of growth

- We say $f_A(n)=30n+8$ is *order n*, or $O(n)$. It is, at most, roughly *proportional* to *n*.
- •• $f_B(n)=n^2+1$ is *order* n^2 , or $O(n)$ 2). It is roughly proportional to n^2 .
- Any $O(n^2)$ function is faster-growing than any O(*n*) function.
- For large numbers of user records, the $O(n^2)$ function will always take more time.

Definition: *O(g)*, *at most order g*

Let g be any function $\mathbf{R}{\rightarrow}\mathbf{R}$.

- Define "*at most order g*", written O(*g*), to be: $\{f: \mathbb{R} \to \mathbb{R} \mid \exists c,k: \forall x \ge k: f(x) \le cg(x)\}.$
	- $-$ "Beyond some point k , function f is at most a constant c times g (*i.e.*, proportional to g)."
- •• *"f* is *at most order g*", or *"f* is $O(g)$ ", or " $f=O(g)$ " all just mean that $f\in O(g)$.
- Sometimes the phrase "at most" is omitted.

Points about the definition

- Note that f is $O(g)$ so long as *any* values of c and k exist that satisfy the definition.
- But: The particular c, k , values that make the statement true are *not* unique: Any **larger value of larger value of** *c* **and/or** *k* **will also work. will also work.**
- You are **not** required to find the smallest c and k values that work. (Indeed, in some cases, there may be no smallest values!)

However, you should **prove** that the values you choose do work.

Useful Facts about Big O

- Big O, as a relation, is transitive: $f \in O(g) \land g \in O(h) \rightarrow f \in O(h)$
- O with constant multiples, roots, and logs... $\forall f$ (in $\omega(1)$) & constants $a,b \in \mathbb{R}$, with $b \ge 0$, af, f^{1-b} , and $(\log_b f)^a$ are all O(*f*).
- Sums of functions: If $g \in O(f)$ and $h \in O(f)$, then $g + h \in O(f)$.

Orders of Growth (§3.2) - So Far

- For any $g: \mathbb{R} \rightarrow \mathbb{R}$, "at most order g ", O(*g*) $\equiv \{f: \mathbf{R} \rightarrow \mathbf{R} \mid \exists c,k \forall x \geq k | f(x) | \leq | c g(x) | \}.$
	- Often, one deals only with positive functions and can ignore absolute value symbols.
- •• " $f \in O(g)$ " often written "f is $O(g)$ " or "*f*=O(*g*) ".
	- The latter form is an instance of a more general convention...

Order-of-Growth Expressions

- • \bullet " $O(f)$ " when used as a term in an arithmetic expression means: "some function f such that $f \in O(f)$ ".
- $E.g.:$ " $x^2+O(x)$ " means "*x* 2 plus some function that is $O(x)$ ".
- Formally, you can think of any such expression as denoting a set of functions: $f^{\prime\prime}(x^2+O(x))^2 := \{g \mid \exists f \in O(x) : g(x) = x\}$ 2 ⁺*f*(*x*)}

Order of Growth Equations

- Suppose E_1 and E_2 are order-of-growth expressions corresponding to the sets of functions S and T , respectively.
- Then the "equation" $E_1 = E_2$ really means *f S*, *g T* : *f*=*g* or simply $S \subseteq T$.
- Example: x $2 + O(x) = O(x^2)$ means $\forall f \in O(x)$: $\exists g \in O(x^2)$: *x* 2 $+f(x)=g(x)$

Definition: $\Theta(g)$, *exactly order g*

- If $f \in O(g)$ and $g \in O(f)$ then we say "g and f *are of the same order*" or "*f is (exactly) order g*" and write $f \in \Theta(g)$.
- Another equivalent definition: $\Theta(g)$ $\equiv \{f: \mathbf{R} \rightarrow \mathbf{R} \mid \mathbf{R}$
	- $\exists c_1 c_2 k \ \forall x \ge k$: $|c_1 g(x)| \le |f(x)| \le |c_2 g(x)|$ }
- •"Everywhere beyond some point $k, f(x)$ lies in between two multiples of $g(x).$ "

are *strictly of lower order t*han $\Theta(f)$.

Other Order-of-Growth Relations

- •• $\Omega(g) = \{f \mid g \in O(f)\}$ "The functions that are *at least order g*."
- $o(g) = \{f | \forall c > 0 \exists k \forall x > k : |f(x)| < |c g(x)|\}$ "The functions that are *strictly lower order* $than g$." $o(g) \subset O(g)$ $-\Theta(g)$.
- •• $\omega(g) = \{f | \forall c > 0 \exists k \forall x > k : |cg(x)| < |f(x)|\}$ "The functions that are *strictly higher order*" than g ." $\omega(g) \subset \Omega(g)$ $-\Theta(g)$.

Review: Growth of Functions (§3.2)

Definitions of order-of-growth sets, $\forall g: \mathbf{R} \rightarrow \mathbf{R}$

- O(*g*) $\equiv \{f | \exists c > 0 \exists k \forall x > k | f(x) | \leq | c g(x) | \}$
- • \bullet $o(g)$ $\equiv \{f | \forall c > 0 \exists k \forall x > k | f(x) | < |c g(x)| \}$
- • $\Omega(g)$ $\equiv \{f | g \in O(f)\}$
- • (*g*) $\equiv \{f | g \in o(f)\}$
- • $\Theta(g)$ \equiv $\equiv O(g) \cap \Omega(g)$

by Mingfu LI, CGUEE

§**3.3: Complexity of Algorithms**

What is *complexity* ?

- The word *complexity* has a variety of technical meanings in different fields. meanings in different fields.
- •There is a field of *complex systems*, which studies complicated, difficult-to-analyze *non-linear* and *chaotic chaotic* natural & artificial systems. natural & artificial systems.
- Another concept: *Informational complexity*: the amount of *information* needed to completely describe an object. (An active research field.)
- •We will study *algorithmic complexity*.

Algorithmic Complexity

- The *algorithmic complexity* of a computation is some measure of how *difficult* it is to perform the computation.
- Measures some aspect of *cost* of computation (in a general sense of cost).
- •Common complexity measures:

"Space " complexity: # of memory bits complexity: # of memory bits req'd

- Another, increasingly important measure of complexity for computing is *energy complexity complexity* -- How much total energy is used in performing the computation.
- Motivations: Battery life, electricity cost...
- I develop *reversible* circuits & algorithms that recycle energy, trading off energy complexity for spacetime complexity.

Complexity Depends on Input

- Most algorithms have different complexities for inputs of different sizes. (*E.g.* searching a long list takes more time than searching a short one.)
- Therefore, complexity is usually expressed as a *function* of input length.
- This function usually gives the complexity for the *worst-case* input of any given length.

Complexity & Orders of Growth

- Suppose algorithm A has worst-case time complexity (w.c.t.c., or just *time*) $f(n)$ for inputs of length $n,$ while algorithm B (for the same task) takes time $g(n).$
- •• Suppose that $f \in \omega(g)$, also written $f \succ g$.
- •Which algorithm will be *fastest* on all sufficiently-large, worst-case inputs?

Example 1: Max algorithm

• Problem: Find the *simplest form* of the *exact* order of growth (Θ) of the *worst-case* time complexity (w.c.t.c.) of the *max* algorithm, assuming that each line of code takes some constant time every time it is executed (with possibly different times for different lines of code).

$$
\begin{array}{ll}\n\text{Discrete Mathemality} & \text{Chap. 3} & \text{by Mingru L.I, CGUEE} \\
\hline\n\text{Complexity analysis, cont.} \\
\hline\n\text{Now, what is the simplest form of the exact} \\
\text{(0) order of growth of } t(n)? \\
\nt(n) = t_1 + \left(\sum_{i=2}^{n} (t_2 + t_3)\right) + t_4 \\
\quad = \Theta(1) + \left(\sum_{i=2}^{n} \Theta(1)\right) + \Theta(1) = \Theta(1) + (n-1)\Theta(1) \\
\quad = \Theta(1) + \Theta(n)\Theta(1) = \Theta(1) + \Theta(n) = \Theta(n)\n\end{array}
$$

Review §3.3: Complexity

- •Algorithmic complexity = $cost$ of computation.
- •Focus on *time* complexity (space & energy are also important.) also important.)
- • Characterize complexity as a function of input Characterize complexity as a function of input size: Worst-case, best-case, average-case.
- •Use orders of growth notation to concisely summarize growth properties of complexity fns.

Binary search analysis

- •• Suppose $n=2$ *k*.
- •• Original range from $i=1$ to $j=$ $=n$ contains *n* elems.
- •• Each iteration: Size $j-i+1$ of range is cut in half.
- •• Loop terminates when size of range is $1=2⁰$ $(i=j)$.
- •• Therefore, number of iterations is $k = log_2 n$ $= \Theta(\log_2 n) = \Theta(\log n)$
- •• Even for $n\neq 2$ *k* (not an integral power of 2), (not an integral power of 2), time complexity is still $\Theta(\log_2 n) = \Theta(\log n)$.

a constant.)

Names for some orders of growth

- • $\Theta(1)$ Constant
- • (log *c n*
- •(log *c n*
- •(*n*
- • (*n c*
- • $\Theta(c^n), c>1$
- • Θ (
- $($ Logarithmic (same order $\forall c$) (With *c*
	- Polylogarithmic
	- **Linear**
		-) Polynomial Polynomial
- Exponential Exponential
	- **Factorial**

list has *at most logarithmic* time complexity. (Complexity is O(log *n*).)

Tractable *vs.* intractable

- •A problem or algorithm with at most polynomial time complexity is considered *tractable* (or *feasible*). **P** is the set of all tractable problems.
- A problem or algorithm that has more than polynomial complexity is considered *intractable* (or *infeasible infeasible*)*.*
- Note that $n^{1,000,000}$ is *technically* tractable, but *really impossible. n*^{log log log n is *technically*} intractable, but easy. Such cases are rare though.

Unsolvable problems

- Turing discovered in the 1930's that there are problems unsolvable by *any* algorithm.
	- Or equivalently, there are undecidable yes/no questions, and uncomputable functions.
- Example: the *halting problem*.
	- Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "*infinite loop*? "

- *solutions* to see if they are correct.
- We know $P \subseteq NP$, but the most famous unproven conjecture in computer science is that this inclusion is *proper* (*i.e.*, that **P** \subset **NP** rather than **P**=**NP**).
- •Whoever first proves it will be famous!

(c)2001-2002, Michael P. Frank \S 3.3 – Complexity of Algorithms 73

complexity for simple algorithms.

by Mingfu LI, CGUEE

§**3.4: The Integers and Division**

(c)2001-2002, Michael P. Frank \S 3.4 – The Integers and Division 75

The Integers and Division

- Of course you already know what the integers are, and what division is...
- **But:** There are some specific notations, terminology, and theorems associated with terminology, and theorems associated with these concepts which you may not know.
- These form the basics of *number theory*.
	- Vital in many important algorithms today (hash functions, cryptography, digital signatures).

Divides, *Factor*, *Multiple*

- Let $a,b \in \mathbb{Z}$ with $a \neq 0$.
- \bullet *^a*|*b* ≡ " *a divides divides b* $"\coloneqq$ " *c* **Z**: *b=ac* ""There is an integer c such that c times a equals *b.* "

 $-$ Example: $3|-12 \Leftrightarrow$ **True**, but $3|7 \Leftrightarrow$ **False**.

• Iff *a* divides *b*, then we say *a* is a *factor* or a *divisor divisor* of *b*, and *b* is a *multiple multiple* of *a*.

• "b is even":
$$
\equiv 2|b
$$
. Is 0 even? Is -4?

More Detailed Version of Proof

- Show $\forall a,b,c \in \mathbb{Z}$: $(a|b \wedge a|c) \rightarrow a | (b+c)$.
- Let a, b, c be any integers such that $a|b$ and *a*| c , and show that *a* | (*b* + *c*).
- By defn. of $|$, we know $\exists s: b = as$, and $\exists t$: $c = at$. Let *s*, *t*, be such integers.
- Then $b+c = as + at = a(s+t)$, so ∃*и: b+c=au*, namely *и* = $=$ *s*+*t*. Thus *a*|(*b*+*c*).

The Division "Algorithm"

- Really just a *theorem*, not an algorithm... $-$ The name is used here for historical reasons.
- For any integer *dividend* a and *divisor* $d\neq 0$, there is a unique integer *quotient q* and *remainder* $r \in \mathbb{N}$ $\ni a = dq + r$ and $0 \le r < r$ |*d|*. (such that)
- • $\forall a, d \in \mathbb{Z}, d \ge 0$: $\exists ! q, r \in \mathbb{Z}$: $0 \le r \le |d|, a = dq + r$.
- We can find q and r by: $q=$ \equiv *a* \mid *d* \rfloor , *r* = $=$ a $-qd$.

- We can compute $(a \mod d)$ by: $a \cdot$ $-d \cdot \lfloor a/d \rfloor$
- In C programming language, " $\frac{1}{6}$ $" = \text{mod}.$

Modular Congruence

- Let \mathbb{Z}^+ = { $n \in \mathbb{Z} \mid n > 0$ }, the positive integers.
- Let $a,b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$.
- Then *a is congruent to b modulo m*, written " *a b* (mod *m*) " , iff *^m*| *^a* $-b$.
- •• Also equivalent to: (*a b*) mod *m* = 0.
- •• (Note: this is a different use of " ▔≡ $"$ than the $"$ meaning "is defined as" " I've used before.)

(c)2001-2002, Michael P. Frank \S 3.4 – The Integers and Division 83

Discrete Mathematics

Chap. 3

by Mingfu LI, CGUEE

§**3.5: Primes and Greatest Common Divisors**

Prime Numbers

- An integer $p > 1$ is *prime* iff it is not the product of any two integers greater than 1: $p > 1 \land \neg \exists a, b \in \mathbb{N}: a > 1, b > 1, ab = p.$
- The only positive factors of a prime p are 1 and p itself. Some primes: 2,3,5,7,11,13...
- Non-prime integers greater than 1 are called *composite*, because they can be *composed* by multiplying two integers greater than 1. by multiplying two integers greater than 1.

Fundamental Theorem of Arithmetic <u> Its "Prime-Factorization"</u>

• Every positive integer has a unique representationlas the product of a non decreasing series of zero or more primes.

 $-1 =$ (product of empty series) $= 1$

 $-2 = 2$ (product of series with one element 2)

$$
-4 = 2 \cdot 2
$$
 (product of series 2,2)

liscrete Mathematics

 $-2000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5; 2001 = 3 \cdot 23 \cdot 29;$ $2002 = 2 \cdot 7 \cdot 11 \cdot 13$; $2003 = 2003$

An Application of Primes

- •• When you visit a secure web site (https:... address, indicated by padlock icon in IE, key icon in Netscape), the browser and web site may be using a technology called *RSA encryption*.
- This *public-key cryptography* scheme involves exchanging *public keys* containing the product *pq* of two random large primes p and q (a *private key*) which must be kept secret by a given party.
- So, the security of your day-to-day web transactions depends critically on the fact that all known factoring algorithms are intractable!

Note: There <u>is</u> a tractable *quantum* algorithm for factoring; so if we can ever build big quantum computers, RSA will be insecure.

Greatest Common Divisor

•• The *greatest common divisor* gcd(*a*,*b*) of integers a,b (not both 0) is the largest (most positive) integer *d* that is a divisor both of *a* and of *b*.

 $d = \gcd(a,b) = \max(d: d|a \wedge d|b) \Leftrightarrow$ $d|a \wedge d|b \wedge \forall e \in \mathbb{Z}, (e|a \wedge e|b) \rightarrow d \geq e$

•Example: $gcd(24,36)=?$ Positive common divisors: 1,2,3,4,6,12... Greatest is 12.

Relative Primality

- Integers a and b are called *relatively prime* or *coprime coprime* iff their gcd = 1.
	- Example: Neither 21 and 10 are prime, but they are *coprime*. $21=3.7$ and $10=2.5$, so they have no common factors > 1 , so their gcd = 1.
- A *set* of integers $\{a_1, a_2, ...\}$ is *(pairwise) relatively prime* if all pairs a_i , a_j , *i* \neq *j*, are relatively prime.

Least Common Multiple

•• lcm(a,b) of positive integers a, b , is the smallest positive integer that is a multiple both of a and of *b*. *E.g.* lcm(6,10)=30

> $m = \text{lcm}(a,b) = \text{min}(m: a|m \wedge b|m) \Leftrightarrow$ $a|m \wedge b|m \wedge \forall n \in \mathbb{Z}$: $(a|n \wedge b|n) \rightarrow (m \le n)$

•If the prime factorizations are written as a_n^a and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$ then the LCM is given by *n* $a=p_1^{a_1}p_2^{a_2}\ldots p_n$ *n b nb b* $b=p_1^{p_1}p_2^{p_2}\ldots p_n$ $lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}.$ $max(a_1, b_1)$ $p_1^{\max(a_1, b_1)} p_2^{\max(a_2, b_2)} \dots p_n^{\max(a_n, b_n)}$ *n* $(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}$

by Mingfu LI, CGUEE

§**3.6: Integers and Algorithms**

(c)2001-2002, Michael P. Frank \S 3.6 – Integers and Algorithms 93

Integers & Algorithms

- Topics:
	- $-$ Euclidean algorithm for finding GCD's.
	- Base-*b* representations of integers.
		- Especially: binary, hexadecimal, octal.
		- Also: Two's complement representation of negative numbers.
	- $-$ Algorithms for computer arithmetic:
		- Binary addition, multiplication, division.

Euclid of

Alexandria

325-265 B.C.

Euclid's Algorithm for GCD

- Finding GCDs by comparing prime factorizations can be difficult if the prime factors are unknown. prime factors are unknown.
- Euclid discovered: For all integers a, b, $gcd(a, b) = gcd((a \mod b), b).$
- Sort a,b so that $a \geq b$, and then (given $b \geq 1$) $(a \mod b) < a$, so problem is simplified.

Euclid's Algorithm Example

- gcd(372,164) = gcd(372 mod 164, 164).
	- $-372 \text{ mod } 164 = 372 164 \cdot 372/164 = 372 164 \cdot 2 =$ $372 - 328 = 44.$
- gcd(164,44) = gcd(164 mod 44,44). $-164 \text{ mod } 44 = 164 - 44 \lfloor 164/44 \rfloor = 164 - 44 \cdot 3 = 164 - 132$ $= 32.$
- $\gcd(44,32) = \gcd(44 \mod 32, 32) = \gcd(12, 32) =$ $gcd(32 \mod 12, 12) = gcd(8,12) = gcd(12 \mod 8,$ $(8) = \gcd(4, 8) = \gcd(8 \mod 4, 4) = \gcd(0, 4) = 4.$

Base-*b* number systems

- Ordinarily we write *base*-10 representations of numbers (using digits 0-9).
- 10 isn't special; any base *b*>1 will work.
- For any positive integers n,b there is a unique sequence a_k a_{k-1} \ldots a₁ *a* 0 of *digits* a_i ^{$\lt b$} such that $\sum_{i=0}$ \equiv *ki* $n = \sum a_i b^i$ *b* 0The "*base b expansion of n* "See module #12 for summation notation.

(c)2001-2002, Michael P. Frank \S 3.6 – Integers and Algorithms 98

Addition of Binary Numbers

 $\mathbf{procedure} \ add(a_{n-1}...a_0, \ b_{n-1}...b)$ $\textbf{ocedure}\ add(a_{n-1} \dots a_0, \ b_{n-1} \dots b_0; \ \textbf{binary}\ \textbf{representations}\ of\ \textbf{non-negative}\ \textbf{integers}\ a, b)$ $carry := 0$ **for** $bitIndex := 0$ **to** n $-1\,$ ${go through bits}$ $bitSum := a_{bitIndex} + b_{bitIndex} + carry \quad$ {2-bit sum} $s_{\text{bitIndex}} := \text{bitSum} \mod 2$ {low bit of sum} *carry* := *bitSum* / 2 {high bit of sum} {high bit of sum} *s n* := *carry* return $s_n...s_0$: binary representation of integer s

Two's Complement

- In binary, negative numbers can be conveniently represented using two's complement notation.
- •In this scheme, a string of *n* bits can represent any integer i such that -2 *n* − 1 $\leq i < 2$ *n*⁻¹.
- The bit in the highest-order bit-position (*n*−1) represents a coefficient multiplying -2 *n* − 1;

 $-$ The other positions $i \leq n-1$ just represent 2^i , as before.

•• The negation of any *n*-bit two's complement number $a = a_{n-1} \ldots a_0$ is given by $\overline{a_{n-1} \ldots a_0 + 1}$.

The bitwise logical complement of the *n*-bit string $a_{n-1}...a_0$.

Subtraction of Binary Numbers

procedure $\mathit{subtract}(a_{n-1} \ldots a_0, \, b_{n-1} \ldots b_0 \mathit{.}$ binary two's complement representations of integers *a*,*b*) **return** $add(a, add(b,1)) \{ a + ($ *b*) } This fails if either of the adds causes a carry into or out of the $n-1$ position, since 2 *n* $^{2}+2$ *n* $-2\,$ ≠ − -2 *n* 1 , and − -2 *n* $^{-1}$ + (-2 *n* $^{1}) =$ -2 *n* isn't representable!

Multiplication of Binary Numbers

Binary Division with Remainder

procedure div -mod($a, d \in \mathbb{Z}^+$) {Quotient & rem. of a/d .} $n := max$ (length of a in bits, length of d in bits) **for** *i* := *n* 1 **downto** 0 **if** $a \ge d0$ ^{*i*} **then** {Can we subtract at this position?} $q_i := 1$ {This bit of quotient is 1.} *a* := *a* $-d0ⁱ$ {Subtract to get remainder.} **else** $q_i := 0$ {This bit of quotient is $0.\}$ } *r* := *a* **return** *q*,*^r* ${q =$ quotient, ${r =$ remainder}

(c)2001-2002, Michael P. Frank \S 3.6 – Integers and Algorithms 106

§**3.7: Applications of Number Theory**

(c)2001-2002, Michael P. Frank \S 3.7 – Applications of Number Theory 107

Some Useful Results

Lemma 1: If *a*, *b* and *c* are positive integers such that $\gcd(a, b)=1$ and $a|bc$, then $a|c$.

Pf: by Theorem 1, $1=sa+tb$, $\Rightarrow c=sac+tbc$

Lemma 2: If *p* is a prime and $p|a_1a_2...a_n$, where each a_i is an integer, then $p|a_i$ for some *i*.

Extended Euclid's Algorithm

EXTENDED EUCLID(*m***,** *b***)**

{
$$
(A_1, A_2, A_3)=(1, 0, m);
$$
 $(B_1, B_2, B_3)=(0, 1, b);$
\nwhile $((B_3!=0) \& \& (B_3!=1))$
\n{ $Q = A_3 \text{ div } B_3;$
\n $(T_1, T_2, T_3)=(A_1-Q*B_1, A_2-Q*B_2, A_3-Q*B_3);$
\n $(A_1, A_2, A_3)=(B_1, B_2, B_3);$
\n $(B_1, B_2, B_3)=(T_1, T_2, T_3);$
\nif $(B_3 = 0)$ return $gcd(m, b) = A_3;$ no inverse;
\nif $(B_3 = 1)$ return $gcd(m, b)=1;$ b^{-1} mod $m = B_2;$

Extended Euclid's Algorithm

Chinese Remainder Theorem

Theorem 4: Let m_1 , m_2 , \dots , m_n be pairwise relatively prime positive integers and a_1, a_2, \ldots, a_n arbitrary integers. Then the system has a unique solution modulo $m = m_1 m_2 ... m_n$. $x \equiv a_n \pmod{m_n}$, $x \equiv a_2 \pmod{m_2}$, $x \equiv a_1 \pmod{m_1}$, $\ddot{\cdot}$

Public Key Cryptography

RSA Cryptosystem: There are a private key and a public key. It is an exponentiation algorithm. public key. It is an exponentiation algorithm. (Also known as MIT algorithm) (Also known as MIT algorithm) *RSA Encryption RSA Encryption*: *C* = *M e* mod *n. RSA Decryption:* $M = C^d \mod n$. where $n = pq$, p and q are two *large primes*, and $ed \mod \phi(n) = 1$ with $\phi(n) = (p-1)(q-1)$.

by Mingfu LI, CGUEE

§**3.8: Matrices**

(c)2001-2002, Michael P. Frank \S 3.8 – Matrices 119

 $§$ 3.8 – Matrices

Applications of Matrices

Tons of applications, including: Tons of applications, including:

- Solving systems of linear equations
- •Computer Graphics, Image Processing
- Models within Computational Science $\&$ Engineering
- •Quantum Mechanics, Quantum Computing Quantum Mechanics, Quantum Computing
- •• Many, many more...

$$
\$ 3.8 - Matrices
$$

Row and Column Order

• The rows in a matrix are usually indexed 1 to *m* from top to bottom. The columns are usually indexed 1 to *n* from left to right. Elements are indexed by row, then column. Elements are indexed by row, then column.

$$
\mathbf{A} = [a_{i,j}] = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}
$$

 \S 3.8 – Matrices

(c)2001-2002, Michael P. Frank \hat{S} $3.8 - \text{Matrices}$ 123

Matrices as Functions

• An $m \times n$ matrix $A = [a]$ $_{i,j}]$ of members of a set *S* can be encoded as a partial function $f_{\mathbf{A}}: \mathbb{N} \times \mathbb{N} \rightarrow S$,

such that for $i \le m, j \le n, f_A(i, j) = a_{i,j}$.

• By extending the domain over which f_A is defined, various types of infinite and/or multidimensional matrices can be obtained. multidimensional matrices can be obtained.

$$
\bullet \mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]
$$

\n
$$
\begin{bmatrix} 2 & 6 \\ 0 & -8 \end{bmatrix} + \begin{bmatrix} 9 & 3 \\ -11 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

$$
\$ 3.8-Matrices
$$

 $\overline{}$ $\overline{}$

$$
\$ 3.8 - Matrices
$$

Chap. 3

by Mingfu LI, CGUEE

Review: Matrices, so far

Matrix sums and products:

$$
\mathbf{A} + \mathbf{B} = [a_{i,j} + b_{i,j}]
$$

\n
$$
\mathbf{A} \mathbf{B} = \mathbf{C} = [c_{i,j}] \equiv \left[\sum_{\ell=1}^{k} a_{i,\ell} b_{\ell,j} \right]
$$

Identity matrix of order *n*: $\mathbf{I}_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$.

 \S 3.8 – Matrices

inversion...

Zero-One Matrices

- Useful for representing other structures.
	- $E.$ g., relations, directed graphs (later in course)
- •• All elements of a *zero-one* matrix are 0 or 1
	- **Representing False & True respectively.**
- •• The *meet* of **A**, **B** (both *m*×*n* zero-one matrices):

$$
-\mathbf{A}\wedge\mathbf{B} := [a_{ij}\wedge b_{ij}] = [a_{ij}b_{ij}]
$$

•The *join* of **A**, **B**:

$$
-\mathbf{A}\vee\mathbf{B}\coloneqq[a_{ij}\vee b_{ij}]
$$

$$
\$ 3.8 - Matrices
$$

