Chapter 2.

Sets, Functions, Sequences,
and Sums
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32.1: Sets
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Introduction to Set Theory

o A setis anew type of structure, representing an

unordered collection (group, plurality) of zero or
more distinct (different) objects.

« Set theory deals with operations between,
relations among, and statements about sets.

 Sets are ubiquitous in computer software systems.

e All of mathematics can be defined in terms of
some form of set theory (using predicate logic).
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Basic notations for sets

e For sets, we’ll use variables S, T, U, ...

e \We can denote a set S in writing by listing
all of its elements in curly braces:

— {a, b, c} Is the set of whatever 3 objects are

denoted by a, b, C.

 Set builder notation: For any proposition
P(x) over any universe of discourse,
{x|P(x)} Is the set of all x such that P(x).
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Basic properties of sets

e Sets are inherently unordered:

— No matter what objects a, b, and ¢ denote,
{a,b,c}={a,c,b}={b,ac}=
{b, c,a} ={c, a, b} ={c, b, a}.

o All elements are distinct (unequal);

multiple listings make no difference!

— If a=b, then {a, b, c} ={a, c} ={b, c} =
{a,a,b,a,b,ccc,c}

— This set contains at most 2 elements!
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Definition of Set Equality

e Two sets are declared to be equal if and only if
they contain exactly the same elements.

e |n particular, it does not matter how the set Is
defined or denoted.

« Forexample: The set {1, 2, 3, 4} =
{x | x i1s an integer where x>0 and x<5 } =

{x | X Is a positive integer whose square
IS >0 and <25}
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Infinite Sets

e Conceptually, sets may be infinite (i.e., not
finite, without end, unending).

e Symbols for some special infinite sets:
N={0,1,2, ..} The Natural numbers.

Z=9...,-2,-1,0,1, 2, ...} The Zntegers.

R = The “Real” numbers, such as
374.1828471929498181917281943125...

e Infinite sets come In different sizes!
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Basic Set Relations: Member of

e xe$S (“x1s In S”) Is the proposition that
object x Is an element or member of set S.
—e.0. 3eN, “a"e{x | x s a letter of the alphabet}
— Can define set equality in terms of e relation:

VS, T: S=T © (VX XeS & xeT)
“Two sets are equal Iff they have all the same
members.”
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The Empty Set

o J (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.

e J={}={x|False}
 No matter the domain of discourse,

we have the axiom —3X: xed.
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Subset and Superset Relations

o ScT (“Sisasubset of T") means that every
element of S iIs also an element of T.

ScT < VX (XeS — xeT)
DS, ScS.

SoT (“Sis a superset of T””) means TcS.
Note S=T < ScTA SoT.

S ¢ T means —(ScT), i.e. Ix(xeS A xeT)
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Proper (Strict) Subsets & Supersets

o ScT (“S is a proper subset of T”) means
that ScT but T ¢ S. Similar for SoT.

Example:
{1,2}
{1,2,3}

Venn Diagram equivalent of ScT
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Sets Are Objects, Too!

e The objects that are elements of a set may
themselves be sets.

e E.g.letS={x|xc{1,2,3}}
then S={

+ Note that 1= {1} = {{13} ! WITTD T £ 1L
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Cardinality and Finiteness

 |S| (read “the cardinality of S) Is a measure
of how many different elements S has.

* B0, |9 _, H123}=__, Rab}=__
(11,23} 4.5 }H=____

e IT|S|eN, then we say S is finite.
Otherwise, we say S Is Infinite.

e \What are some Infinite sets we’ve seen?
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The Power Set Operation

e The power set P(S) of a set S Is the set of all
subsets of S. P(S) = {x | xcS}.

* E.g.P({ab}) =1 I

e Sometimes P(S) is written 2°.

Note that for finite S, |P(S)| = 25!,

e |t turns out that |P(N)| > |N]|.
There are different sizes of infinite sets!
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Review: Set Notations So Far

e Variable objects x, y, z; sets S, T, U.
Literal set {a, b, c} and set-builder {x|P(x)}.
e relational operator, and the empty set .

Set relations =, ¢, o, ¢, D, &, etc.

Venn diagrams.

Cardinality |S| and infinite sets N, Z, R.
e Power sets P(S).
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Ordered n-tuples

e These are like sets, except that duplicates
matter, and the order makes a difference.

e For neN, an ordered n-tuple or a sequence
of length n iIs written (a,, a,, ..., a.). The

first element is a,, etc.
« Note (1,2)#(2,1)#(2,1,1).

e Empty sequence, singlets, pairs, triples,
quadruples, quintuples, ..., n-tuples.
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Cartesian Products of Sets

e For sets A, B, their Cartesian product
AxB ={(a,b) | acA AbeB }.

* Eg. {abp{1,2} ={ }
* Note that for finite A, B, |AxB|=|A||B|.

* Note that the Cartesian product is not
commutative: —-VAB: AxB=BxA.

Extends to A, x A, x ... x A,...

René Descartes
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Review of §2.1

e Sets S, T, U... Special sets N, Z, R.
Set notations {a,b,...}, {X|P(X)}...

Set relation operators xeS, ScT, SoT, S=T,
ScT, SoT. (These form propositions.)

Finite vs. infinite sets.
Set operations |S|, P(S), SxT.
Next up: §2.2: More set ops: U, N, —.

(c)2001-2003, Michael P. Frank § 2.1 - Sets 19



§2.2. Set Operations
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The Union Operator

e For sets A, B, theircnion AUB 1s the set
containing all elements that are either in A,
or (*“v”) in B (or, of course, in both).

 Formally, VA,B: AUB = {x | xeA v xeB}.

e Note that AuB contains all the elements of
A and It contains all the elements of B:
VA, B: (AuB 2 A) A (AUB 2 B)
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Union Examples

e {a,b,c}u{2,3} ={

e {2.35}{3,5,7} = {235357}@

Think “The United
States of America

Includes every
person who worked
In any U.S. state last
year.” (This is how
the IRS sees it...)
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The Intersection Operator

e For sets A, B, their intersection AnB Is the
set containing all elements that are
simultaneously in A and (“A”) in B.

 Formally, VA,B: AnB={x | xeA A XxeB}.

 Note that AnB Is asubsetof Aand itis a

subset of B:
VA, B: (AnB c A) A (AnB < B)
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Intersection Examples

e {fab,c}n{2,3}=_
o {2,4,6}n{3,45}=

Think “The
Intersection of
University Ave. and
W 13th St. is just
that part of the road
surface that lies on
both streets.”
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Disjointedness

Help, I’'ve
e Two sets A, B are called been

- e . . . . disjointed!
disjoint (i.e., unjoined)
Iff thelr intersectionis /

empty. (AnB=Y) l
e Example: the set of even

integers is disjoint with / \
the set of odd integers.
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 How many elements are in AuUB?
JAUB| =
e Example: How many students are on our

class email list? Consider setE=1u M,
| = {s | s turned in an information sheet}
M = {s| s sent the TAs their email address}

e Some students did both!
E| = [TUM] = |1] + [M] = [InM]
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Set Difference

e For sets A, B, the difference of A and B,
written A—B, Is the set of all elements that
are In A but not B.

e A—-B = {x|XxeA A xeB}

={X|(xeA—>xeB) }
 Also called:
The complement of B with respect to A.
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Set Difference Examples

* {123,456} -{2,3,5,7,9,11} =

N
|
Z

..,-1,0,1,2, ...}-{0,1, ... }
X | X IS an integer but not a nat. #}
X | X IS @ negative integer}
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Set Difference - Venn Diagram

e A-B i1s what’s left after B
“takes a bite out of A”

Set
A—B

Set A Set B
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Set Complements

e The universe of discourse can Itself be
considered a set, call it U.

e \When the context clearly defines U, we say
that for any set AcU, the complement of A,

written A, is the complement of A w.r.t. U,
le., It1s U-A.
+ Eg., IfU=N, {35}={01,2,4,6,7,..}
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More on Set Complements

« An equivalent definition, when U is clear:

()2001-2003, Michael P. Frank § 2.2 - Set Opefafi



Set ldentities

e |dentity: Aud=A ANnU=A
Domination: AuU=U ANnG=J
Idempotent: AUA=A=ANA

Double complement: (A) = A
Commutative: AuB=BUA ANB=BNA

Associative: Au(BuC)=(AuB)uC
AN(BNC)=(AnB)NC
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DeMorgan’s Law for Sets

e Exactly analogous to (and derivable from)
DeMorgan’s Law for propositions.

AU B =

ANB =
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Proving Set ldentities

To prove statements about sets, of the form
E, = E, (where Es are set expressions), here
are three useful techniques:

» Prove E; c E, and E, ¢ E, separately.

e Use set builder notation &
logical equivalences.

e Use a membership table.
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Method 1: Mutual subsets

Example: Show An(BUC)=(AnB)U(ANC).

e Show An(BUC)c(ANB)U(ANC).
— Assume xeAn(BuUC), & show xe(ANB)U(ANC).
— We know that xeA, and either xeB or xeC.

e Case 1: xeB. Then xeAnB, so xe(AnB)U(ANC).
e Case 2: xeC. Then xeAnC, so xe(AnB)U(ANC).

— Therefore, xe (AnB)U(ANC).
— Therefore, An(BUC)c(ANB)U(ANC).

e Show (AnB)U(ANC) < An(BLC). ...
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Method 3: Membership Tables

e Just like truth tables for propositional logic.
Columns for different set expressions.

Rows for all combinations of memberships
In constituent sets.

Use “1” to indicate membership in the
derived set, “0” for non-membership.

Prove equivalence with identical columns.
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Membership Table Example

Prove (AUB)-B = A-B.
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Membership Table Exercise

Prove (AuB)-C = (A-C)u(B-C).
AUB | (AUB)-C| A-C | B-C | (A-C)u(B—C)

>
o
O

000
001
010
011
100
101
110
111
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Review of §2.1~2.2

e Sets S, T, U... Special sets N, Z, R.
Set notations {a,b,...}, {X|P(X)}...
Relations xeS, ScT, SoT, S=T, ST, SoT.

Operations |S|, P(S), x, U, N, —, S
Set equality proof techniques:

— Mutual subsets.
— Derivation using logical equivalences.
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Generalized Unions & Intersections

e Since union & Intersection are commutative
and assoclative, we can extend them from
operating on ordered pairs of sets (A,B) to
operating on sequences of sets (A,,...,A,),

or even unordered sets of sets,
X={A| P(A)}.
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Generalized Union

e Binary union operator: AuB

e n-ary union:
AVA L. VA, = ((...(AjV A) L., )UA)
(grouping & order is irrelevant)

e “Big U” notation: n A
g

e QOr for Infinite sets of sets: U A
Ae X
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Generalized Intersection

 Binary Intersection operator: AnB

e n-ary Intersection:
AnAN...0A=((...((A;NA)N.)NA)
(grouping & order is irrelevant)

e “Big Arch” notation: ﬁAi

1=1
e QOr for Infinite sets of sets: ﬂ A
Ae X
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Representations

A frequent theme of this course will be
methods of representing one discrete

structure using another discrete structure of
a different type.

e E.g., one can represent natural numbers as
— Sets: 0=, 1:={0}, 2.={0,1}, 3:={0,1,2}, ...
— Bit strings:
0:=0, 1:=1, 2:=10, 3:=11, 4:=100, ...
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Representing Sets with Bit Strings

For an enumerable u.d. U with ordering
{Xy, X5, ...}, represent a finite set ScU as
the finite bit string B=b,b,...b, where
Vi: X,€S <> (I<n A b=1).

E.g. U=N, S={2,3,5,7,11}, B=001101010001.
In this representation, the set operators

“U7, N, are Implemented directly by
bitwise OR, AND, NOT!
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Symmetric Difference of Sets

Symmetric Difference of A and B, denoted as
ADB,where

ADB={x | x In A or in B, but not both}.

E.g: A®B=(AuUB)-(A N B)
=(A-B) uU(B-A)
Do it in homework!
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§2.3. Functions
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Function: Formal Definition

e For any sets A, B, we say that a function f
from (or “mapping™) Ato B (FA—B) is a
particular assignment of exactly one
element f(x) B to each element xA.

e Some further generalizations of this idea:

— A partial (non-total) function f assigns zero or
one elements of B to each element xeA.

— Functions of n arguments; relations (ch. 8).
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Graphical Representations

 Functions can be represented graphically In
several ways:

A B Bipartite Graph
Like Venn diagrams
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Functions We’ve Seen So Far

A proposition can be viewed as a function
from “situations” to truth values {T,F}

— A logic system called situation theory.
— p="It Is raining.”; s=our situation here,now
- p(s)e{T,F}.
e A propositional operator can be viewed as

a function from ordered pairs of truth
values to truth values: v((F,T)) =T.

Another example: —((T,F)) = F.
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More functions so far...

« A predicate can be viewed as a function
from objects to propositions (or truth
values): P := “is 7 feet tall”;

P(Mike) = “Mike Is 7 feet tall.” = False.

« A bit string B of length n can be viewed as
a function from the numbers {1,...,n}
(bit positions) to the bits {0,1}.
E.g, B=101 = B(3)= .
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Still More Functions

o A set S over universe U can be viewed as a
function from the elements of U to
{T, F}, saying for each element of U
whether it is in S. S={3}; S(0)=F, S(3)=T.

e A set operator such as N,u, can be
viewed as a function from pairs of sets
to sets.

— Example: n(({1,3},{3.4})) =
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A Neat Trick

e Sometimes we write YX to denote the set F
of all possible functions f : X—Y.

« This notation Is especially appropriate,
because for finite X, Y, |F| = |Y|X.

 |f we use representations F=0, T=1,
2:={0,1}={F, T}, then a subset TcS Is just a
function from S to 2, so the power set of S
(set of all such fns.) is 2° in this notation.
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Some Function Terminology

e |Iff:A—B, and f(a)=b (where acA & beB),
then:

— A IS the domain of f.
— B Is the codomain of f.

— b Is the image of a under f.

— a s a pre-image of b under f.
* In general, b may have more than 1 pre-image.

— The range RcB of fis {b | 3a f(a)=b }.
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Range versus Codomain

e The range of a function might not be its
whole codomain.

e The codomain is the set that the function is
declared to map all domain values into.

e The range is the particular set of values In
the codomain that the function actually
maps elements of the domain to.
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Range vs. Codomain - Example

e Suppose | declare to you that: “f is a
function mapping students in this class to
the set of grades {A,B,C,D,E}.”

« At this point, you know f’s codomain is:

, and Its range IS
e Suppose the grades turn out all As and Bs.

e Then the range of fis , but its
codomain is
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Operators (general definition)

e An n-ary operator over the set S Is any
function from the set of ordered n-tuples of
elements of S, to S itself.

e E.g, If S={T,F}, — can be seen as a unary

operator, and A,v are binary operators on S.

e Another example: L and m are binary
operators on the set of all sets.
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Constructing Function Operators

e |f o (“dot”) IS any operator over B, then we
can extend e to also denote an operator over
functions f : A—B.

e E.g.: Glven any binary operator e: BxB—B,

and functions f, g : A—>B, we define
(f e g): A—B to be the function defined by:
vaeA, (f e g)(a) = f(a)eg(a).
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Function Operator Example

e +x (“plus”,“times™) are binary operators
over R. (Normal addition & multiplication.)

e Therefore, we can also add and multiply
functions f, g : R—>R:

- (f+9g) : R—>R, where (f + g)(x) = f(x) + g(x)
- (fx g) : R—>R, where (f x g)(x) = f(x) x g(x)

(c)2001-2003, Michael P. Frank § 2.3 — Functions 58



Function Composition Operator

e For functions g:A—B and f:B—C, there is a
special operator called compose (“0).

— It composes (creates) a new function out of f,g
by applying f to the result of g.

— (fog) : A—>C, where (fog)(a) = f(g(a)).
— Note g(a)eB, so f(g(a)) is defined and C.

— Note that o (like Cartesian x, but unlike +,A,V)
IS non-commuting. (Generally, fog # gof.)
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Images of Sets under Functions

e Givenf: A—B, and ScA,

e The image of S under f is simply the set of
all images (under f) of the elements of S.

f(S) = {f(s) | seS}

={b |3 seS: f(s)=b}.
* Note the range of f can be defined as simply
the image (under f) of f ’s domain!
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One-to-One Functions

e A function is one-to-one (1-1), or injective, or an injection,
Iff every element of its range has only 1 pre-image.
— Formally: given f : A—B,
“x i1s injective” = (—3x,y: xzy A f(X)=f(y)).
e Only one element of the domain Is mapped to any given
one element of the range. &,‘p
n: ]

— Domain & range have same cardinality. What about codomai
» Each element of the domain is injected into a different
element of the range.

— Compare “each dose of vaccine is injected into a different
patient.”
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One-to-One llustration

e Bipartite (2-part) graph representations of
functions that are (or not) one-to-one:

Not one-to-one Not even a
One-to-one function!
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Sufficient Conditions for 1-1ness

e For functions f over numbers,

— fis strictly (or monotonically) increasing iff
x>y — f(x)>f(y) for all x,y in domain;

— fis strictly (or monotonically) decreasing iff

x>y — f(x)<f(y) for all x,y in domain;

o |If fis either strictly increasing or strictly
decreasing, then f is one-to-one. E.g. X3

— Converse Is not necessarily true. E.g. 1/x
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Onto (Surjective) Functions

e A function f : A—B Is onto or surjective or
a surjection Iff its range 1s equal to Its
codomain (VbeB, JacA: f(a)=Db).

« An onto function maps the set A onto (over,

covering) the entirety of the set B, not just
over a piece of It.

e E.g., for domain & codomain R, x°is onto,
whereas xZisn’t. (Why not?)
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[llustration of Onto

e Some functions that are or are not onto their
codomains:

Onto Not Onto Both 1-1 1-1 but
(but not 1-1) (or 1-1) and onto not onto
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e A function f IS a one-to-one
correspondence, or a bijection, or
reversible, or invertible, iff it 1s both one-
to-one and onto.

e For bijections f : A—B, there exists an
inverse of f, written f ~1: B—A, which is
the unique function such that f o f = |
(the 1dentity function)
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The ldentity Function

e For any domain A, the identity function
|:A—A (variously written, 1,, 1, 1,) is the
unique function such that VaeA: I(a)=a.

e Some Identity functions you’ve seen:

— +ing 0, -ing by 1, Aing with T, ving with F,
wing with &, ning with U.
* Note that the identity function is both one-
to-one and onto (bijective).
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ldentity Function lllustrations

e The identity function:

Domain and range
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Graphs of Functions

e \We can represent a function f : A—>B as a
set of ordered pairs {(a, f(a)) | acA}.

* Note that Va, there is only 1 pair (a, f(a)).
— Later (ch.8): relations loosen this restriction.

 For functions over numbers, we can
represent an ordered pair (X, y) as a point on
a plane. A function is then drawn as a curve
(set of points) with only one y for each x.
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A Couple of Key Functions

 In discrete math, we will frequently use the
following functions over real numbers:

— ] (“floor of x™) is the largest (most positive)
Integer < X.

— [ x] (“ceiling of x™) is the smallest (most
negative) integer > Xx.
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Visualizing Floor & Celling

e Real numbers “fall to their floor” or “rise to
their ceiling.” 31
[1.6]=2

e Note that If x¢Z, o
L_XJ %+ — LXJ & l1.6)=1

r—X—‘ o |7X“ (1411
 Note that If xeZ, )

[ x]=[x]=x. e

| Ursk-sk-3

(c)2001-2003, Michael P. Frank § 2.3 — Functions 71



Plots with floor/ceiling

Note that for f (x)=/.xJ, the graph of f includes the
point (a, 0) for all values of a such that a>0 and
a<l, but not for a=1. We say that the set of
points (a,0) that Is In f does not include its limit or

boundary point (a,1). Sets that do not include all
of their limit points are called open sets. In a plot,
we draw a limit point of a curve using an open dot
(circle) if the limit point is not on the curve, and
with a closed (solid) dot if it Is on the curve.
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Plots with floor/ceiling: Example

e Plot of graph of function f(x) = x/3.
+ )
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Review of §2.3 (Functions)

Function variables f, g, h, ...
Notations: f : A—B, f (a), f (A).

Terms: image, preimage, domain, codomain,
range, one-to-one, onto, strictly (in/de)creasing,

pijective, inverse, composition.

~unction unary operator f -1,
pinary operators +, —, etc., and Q.

The R—Z functions | x ] and [ x |
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§ 2.4: Sequences and Summations
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Sequences & Strings

e A sequence or series Is just like an ordered
n-tuple, except:
— Each element in the series has an associated

Index number.
— A sequence or series may be infinite.
e A summation Is a compact notation for the

sum of all terms in a (possibly infinite)
series.
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Sequences

» Formally: A sequence or series {a,} IS
Identified with a generating function f:.S—>A
for some subset ScN (often S=N or
S=N—{0}) and for some set A.

 |f fis a generating function for a series

{a.}. then for neS, the symbol a, denotes
f(n), also called term n of the sequence.

* The index of a, I1s n. (Or, often 1 1s used.)
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Sequence Examples

» Many sources just write “the sequence a,,
a,, ... Instead of {a,}, to ensure that the

set of indices is clear.
— Our book leaves it ambiguous.

e An example of an infinite series:

— Consider the series {a,} = a,, a,, ..., where
(Vn=1) a = f(n) = 1/n.
—Then{a.} =1, 1/2,1/3, ...
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Example with Repetitions

» Consider the sequence {b.} = b,, b, ...
(note O is an Iindex) where b, = (—1)".

e {b}=1-1,1, -1, ...
» Note repetitions! {b_} denotes an infinite

sequence of 1’s and —1’s, not the 2-element
set {1, -1}
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Recognizing Sequences

e Sometimes, you’re given the first few terms
of a sequence, and you are asked to find the
sequence’s generating function, or a
procedure to enumerate the sequence.

o Examples: What’s the next number?
-1234,... 5 (the 5th smallest number >0)
-1.3,5,7,9,... 11 (the 6th smallest odd number >0)
-2,3,5,7,11,... 13 (the 6th smallest prime number)
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The Trouble with Recognition

The problem of finding “the” generating function given
just an initial subsequence is not well defined.

This is because there are infinitely many computable
functions that will generate any given initial subsequence.

We implicitly are supposed to find the simplest such
function (because this one is assumed to be most likely),
but, how should we define the simplicity of a function?
— We might define simplicity as the reciprocal of complexity, but...
— There are many plausible, competing definitions of complexity,
and this is an active research area.

So, these questions really have no objective right answer!
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What are Strings, Really?

e This book says “finite sequences of the
form a,, a,, ..., &, are called strings”, but
Infinite strings are also used sometimes.

e Strings are often restricted to sequences

composed of symbols drawn from a finite
alphabet, and may be indexed from 0 or 1.

e Either way, the length of a (finite) string is
Its number of terms (or of distinct indexes).
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Strings, more formally

e Let X be a finite set of symbols, 1.e. an alphabet.

e Astring s over alphabet Z Is any sequence {s;} of
symbols, s;eZ, indexed by N or N—{0}.

e Ifa,Db,c, ... aresymbols, thestrings=a, Db, c, ...
can also be written abc ...(I.e., without commas).

 |fsisa finite string and t is a string, the
concatenation of s with t, written st, Is the string
consisting of the symbols In s, In sequence,
followed by the symbols in t, in sequence.
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More String Notation

e The length |s| of a finite string s Is its number of
positions (i.e., its number of index values 1).

e Ifsisa finite string and neN, s" denotes the

concatenation of n coplies of s.

e ¢ denotes the empty string, the string of length 0.
e |f X isan alphabet and neN,

2" ={s | sis astring over Z of length n}, and
" ={s| s is a finite string over X}.
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Summation Notation

» Given a series {a,}, an integer lower bound
(or limit) j>0, and an integer upper bound
k>, then the summation of {a_} from j to k
IS written and defined as follows:

k
Y ai=a;,+a;, +..+3,
i= |
e Here, 1 IS called the index of summation.
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Generalized Summations

* For an Infinite series, we may write:
Za =a,+a, +..
« To sum a function over all members of a set

X={Xy, X, .30 D F ()= )+ F(x)+...

Xe X

e Or, If X={x|P(x)}, we may just write:

> F()=f(x)+ F(x,)+..

P(x)
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Simple Summation Example

ii2+1:
1=2

=(4+1)+(O9+1)+(16+1)
=5+10+17
=32
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More Summation Examples

e An infinite series with a finite sum:

1=0

e Using a predicate to define a set of
elements to sum over:

> -

(X 1s prime) A
x<10
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Summation Manipulations

e Some handy identities for summations:

Zcf (X) = CZ f (X) (Distributive law.)

(Application

Z F(x)+9(x) = (Z f (X)j + Z g(X) Ofaiﬁ,rﬂy;]t-

Z f(1)= Z f(1—n) (Index shifting.)

i=j+n
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More Summation Manipulations

e Other identities that are sometimes useful:

Z F() 1f j<m<k
i=m+1 (Series splitting.)

(Order reversal.)

{Z f(2i)+ f(2i +1)}— f(2k +1)

(Grouping.)
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Example: Impress Your Friends

e Boast, “I’'m so smart; give me any 2-digit
number n, and I’ll add all the numbers from
1 to nin my head In just a few seconds.”

n

e |.e., Evaluate the summation: :
ZI

1=1
e There is a simple closed-form formula for
the result, discovered by Euler at age 12!

Leonhard }&

Euler
ns(1707-1783)
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Euler’s Trick, Illustrated

e Consider the sum:

e n/2 pairs of elements, each pair summing to
n+1, for a total of (n/2)(n+1).
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Symbolic Derivation of Trick
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Concluding Euler’s Derivation

e S0, you only have to do 1 easy
multiplication in your head, then cut in half.

 Also works for odd n (prove this at home).
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Example: Geometric Progression

e A geometric progression Is a series of the
form a, ar, ar?, ar?, ..., ark, where a,reR.

e The sum of such a series Is given by:

K
S=) ar
1=0

» \We can reduce this to closed form via
clever manipulation of summations...
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Geometric Sum Derivation

(€)2001-2003, Michael P. Frank § 2.4 — Sequences and Summations 96



Concluding long derivation...

Whenr =15 :Zn:ar‘ :Zn:ali :Zn:a-lz(n+1)a
i1=0 =0 1=0
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Nested Summations

* These have the meaning you’d expect.

iiij =i[iijj:ii£i jj:ii(1+2+3)

i=1 j=1 i=1 \ j=1 i=1 \ j=1 i=1

4

:24:6i =6) i=6(1+2+3+4)
i=1

=1

=6-10=60
* Note issues of free vs. bound variables, just
like In quantified expressions, integrals, etc.
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Some Shortcut Expressions

Zar —a(r™ -1 /(r=1),r =1 Geometric series.

Z k — Euler’s trick.
k2 . :
Z Quadratic series.

Zk3 o
Cubic series.
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Using the Shortcuts

100

« Example: Evaluate kaZ .
=50
— Use series splitting.

— Solve for desired
summation. 100

> -

— Apply quadratic /=

series rule. 100101201 49-50-99
_ 6
Evaluate. _ 338 350 40,425
_ 297925,
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Summations: Conclusion

 You need to know:

— How to read, write & evaluate summation
expressions like:

Zk;ai iai > f(x) Zf(x)

xe X P(x)
— Summation manipulation laws we covered.

— Shortcut closed-form formulas,
& how to use them.
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Infinite Cardinalities

« Using what we learned about functions In
§2.3, It’s possible to formally define
cardinality for infinite sets.

e \We show that Infinite sets come In

different sizes of infinite!

e This also gives us some interesting proof
examples.
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e For any two (possibly infinite) sets A and B,
we say that A and B have the same
cardinality (written |A|=|B|) Iff there exists a

bijection (bijective function) from A to B.

e \WWhen A and B are finite, It Is easy to see
that such a function exists i1ff A and B have
the same number of elements neN.
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Countable versus Uncountable

e Forany set S, if S is finite or If |S|=|N|, we say S Is
countable. Else, S i1s uncountable.

Intuition behind “countable:” we can enumerate
(generate In series) elements of S in such a way

that any individual element of S will eventually be
counted in the enumeration. Examples: N, Z.

Uncountable: No series of elements of S (even an
Infinite series) can include all of S’s elements.
Examples: R, R?, P(N)
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Countable Sets: Examples

e Theorem: The set Z Is countable.

— Proof: Consider f:Z—N where f(1)=2i for 1>0
and f(i) = —2i-1 for i1<0. Note f is bijective.

 Theorem: The set of all ordered pairs of

natural numbers (n,m) iIs countable.

— Consider listing the pairs in order by their sum
s=n+m, then by n. Every pair appears once in
this series; the generating function is bijective.

(c)2001-2003, Michael P. Frank § 2.4 — Sequences and Summations 105



Uncountable Sets: Example

 Theorem: The open interval
[0,1) :={reR| 0 <r <1} isuncountable. |

« Proof by diagonalization: (Cantor, 1891)

] i Georg Cantor
— Assume there is a series {r;} =y, I, ... 184%_1918
containing all elements re[0,1).

— Consider listing the elements of {r;} in decimal
notation (although any base will do) in order of
Increasing index: ... (continued on next slide)
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Uncountability of Reals, cont’d

A postulated enumeration of the reals:

Now, consider a real number generated by taking
all digits d; ; that lie along the diagonal in this figure
and replacing them with different digits.
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Uncountability of Reals, fin.

e E.g., a postulated enumeration of the reals:
1948571...

018481...
94193...

e OK, now let’s add 1 to each of the diagonal
digits (mod 10), that is changing 9’s to 0.

e 0.4103... can’t be on the list anywhere!
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Countable vs. Uncountable

e You should:

— Know how to define “same cardinality” in the
case of Infinite sets.

— Know the definitions of countable and
uncountable.

— Know how to prove (at least in easy cases) that
sets are either countable or uncountable.
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