
1

Chapter 1

(c)2001-2003, Michael P. Frank

Chapter 1:
Foundations: Logic and Proofs

2

Chapter 1

(c)2001-2003, Michael P. Frank

Foundations of Logic
(§1.1-1.3)

Mathematical Logic is a tool for working with
complicated compound statements. It includes:

• A language for expressing them.
• A concise notation for writing them.
• A methodology for objectively reasoning about

their truth or falsity.
• It is the foundation for expressing formal proofs

in all branches of mathematics.

3

Chapter 1

(c)2001-2003, Michael P. Frank

Foundations of Logic: Overview

•• Propositional logicPropositional logic ((§§1.11.1--1.2):1.2):
–– Basic definitions. (Basic definitions. (§§1.1)1.1)
–– Equivalence rules & derivations. (Equivalence rules & derivations. (§§1.2)1.2)

•• Predicate logicPredicate logic ((§§1.31.3--1.4)1.4)
–– Predicates.Predicates.
–– Quantified predicate expressions.Quantified predicate expressions.
–– Equivalences & derivations.Equivalences & derivations.

4

Chapter 1

(c)2001-2003, Michael P. Frank

Propositional Logic (§1.1)

Propositional LogicPropositional Logic is the logic of compound is the logic of compound
statements built from simpler statements statements built from simpler statements
using sousing so--called called BooleanBoolean connectivesconnectives..

Some applications in computer science:Some applications in computer science:
•• Design of digital electronic circuits.Design of digital electronic circuits.
•• Expressing conditions in programs.Expressing conditions in programs.
•• Queries to databases & search engines.Queries to databases & search engines.

§ 1.1 – Propositional Logic

George Boole
(1815-1864)

Chrysippus of Soli
(ca. 281 B.C. – 205 B.C.)

5

Chapter 1

(c)2001-2003, Michael P. Frank

Definition of a Proposition

A A propositionproposition ((pp, , qq, , rr, , ……) is simply a) is simply a statementstatement ((i.e.i.e., ,
a declarative sentence)a declarative sentence) with a definite meaningwith a definite meaning, ,
having a having a truth valuetruth value thatthat’’s either s either truetrue (T) or (T) or falsefalse
(F) ((F) (nevernever both, neither, or somewhere in both, neither, or somewhere in
between).between).

(However, you might not (However, you might not knowknow the actual truth the actual truth
value, and it might be situationvalue, and it might be situation--dependent.)dependent.)

[Later we will study [Later we will study probability theory,probability theory, in which we assign in which we assign
degrees of certaintydegrees of certainty to propositions. But for now: think to propositions. But for now: think
True/False only!]True/False only!]

§ 1.1 – Propositional Logic

6

Chapter 1

(c)2001-2003, Michael P. Frank

Examples of Propositions

•• ““It is raining.It is raining.”” (In a given situation.)(In a given situation.)
•• ““Beijing is the capital of China.Beijing is the capital of China.”” •• ““1 + 2 = 31 + 2 = 3””
But, the following are But, the following are NOTNOT propositions:propositions:
•• ““WhoWho’’s there?s there?”” (interrogative, question)(interrogative, question)
•• ““La la la la la.La la la la la.”” (meaningless interjection)(meaningless interjection)
•• ““Just do it!Just do it!”” (imperative, command)(imperative, command)
•• ““Yeah, I Yeah, I sortasorta dunnodunno, whatever..., whatever...”” (vague)(vague)
•• ““1 + 21 + 2”” (expression with a non(expression with a non--true/false value)true/false value)

§ 1.1 – Propositional Logic

7

Chapter 1

(c)2001-2003, Michael P. Frank

An An operatoroperator or or connectiveconnective combines one or combines one or
more more operandoperand expressions into a larger expressions into a larger
expression. (expression. (E.g.E.g., , ““++”” in numeric in numeric exprsexprs.).)

UnaryUnary operators take 1 operand (operators take 1 operand (e.g.,e.g., −−3); 3);
BinaryBinary operators take 2 operands (operators take 2 operands (egeg 3 3  4).4).

PropositionalPropositional or or BooleanBoolean operators operate operators operate
on propositions or truth values instead of on on propositions or truth values instead of on
numbers.numbers.

Operators / Connectives

§ 1.1 – Propositional Logic: Operators

8

Chapter 1

(c)2001-2003, Michael P. Frank

Some Popular Boolean Operators

↔↔BinaryBinaryIFFIFFBiconditionalBiconditional operatoroperator
BinaryBinaryIMPLIESIMPLIESImplication operatorImplication operator
BinaryBinaryXORXORExclusiveExclusive--OR operatorOR operator

Disjunction operatorDisjunction operator
Conjunction operatorConjunction operator
Negation operatorNegation operator

Formal NameFormal Name

BinaryBinaryOROR
BinaryBinaryANDAND
¬¬UnaryUnaryNOTNOT

SymbolSymbolArityArityNicknameNickname

§ 1.1 – Propositional Logic: Operators

9

Chapter 1

(c)2001-2003, Michael P. Frank

The Negation Operator

The unary The unary negation operatornegation operator “¬”“¬” ((NOTNOT))
transforms a prop. into its logicaltransforms a prop. into its logical negationnegation..

E.g.E.g. If If pp = = ““I have brown hair.I have brown hair.””
then then ¬¬pp = = ““I do I do notnot have brown hair.have brown hair.””

Truth tableTruth table for for NOTNOT:: p p
T
F

T :≡ True; F :≡ False
“:≡” means “is defined as”

Operand
column

Result
column

§ 1.1 – Propositional Logic: Operators

10

Chapter 1

(c)2001-2003, Michael P. Frank

The Conjunction Operator

The binary The binary conjunction operatorconjunction operator ““”” ((ANDAND))
combines two propositions to form their combines two propositions to form their
logical logical conjunctionconjunction..

E.g.E.g. If If pp==““I will have salad for lunch.I will have salad for lunch.”” and and
q=q=““I will have steak for dinner.I will have steak for dinner.””, then , then
ppqq==““I will have salad for lunch I will have salad for lunch andand

I will have steak for dinner.I will have steak for dinner.””

Remember: “”” points up like an points up like an ““AA””, and it means , and it means ““NDND””

NDND

§ 1.1 – Propositional Logic: Operators

11

Chapter 1

(c)2001-2003, Michael P. Frank

•• Note that aNote that a
conjunctionconjunction
pp11  pp2 2  ……  ppnn
of of nn propositionspropositions
will have will have 22nn rowsrows
in its truth table.in its truth table.

•• Also: Also: ¬¬ and and  operations together are operations together are suffisuffi--
cientcient to express to express anyany Boolean truth table!Boolean truth table!

Conjunction Truth Table

p q pq
F F
F T
T F
T T

Operand columns

§ 1.1 – Propositional Logic: Operators

12

Chapter 1

(c)2001-2003, Michael P. Frank

The Disjunction Operator

•• The binary The binary disjunction operatordisjunction operator ““”” ((OROR))
combines two propositions to form their combines two propositions to form their
logical logical disjunctiondisjunction..

•• pp==““My car has a bad engine.My car has a bad engine.””
•• q=q=““My car has a bad carburetor.My car has a bad carburetor.””
•• ppqq==““Either my car has a bad engine, Either my car has a bad engine, oror

my car has a bad carburetor.my car has a bad carburetor.”” After the downward-
pointing “axe” of “””
splits the wood, yousplits the wood, you
can take 1 piece OR can take 1 piece OR
the other, or both.the other, or both.



Meaning is like “and/or” in English.

§ 1.1 – Propositional Logic: Operators

13

Chapter 1

(c)2001-2003, Michael P. Frank

•• Note that Note that ppq q meansmeans
that that pp is true, or is true, or qq isis
true, true, or bothor both are true!are true!

•• So, this operation isSo, this operation is
also called also called inclusive or,inclusive or,
because it because it includesincludes thethe
possibility that both possibility that both pp and and qq are true.are true.

•• ““¬¬”” and and ““”” together are also universal.together are also universal.

Disjunction Truth Table

p q pq
F F
F T
T F
T T

§ 1.1 – Propositional Logic: Operators

14

Chapter 1

(c)2001-2003, Michael P. Frank

Nested Propositional Expressions

•• Use parentheses to Use parentheses to group subgroup sub--expressionsexpressions::
““I just saw my old I just saw my old ffriendriend, , andand eithereither hehe’’s s
ggrownrown oror II’’ve ve sshrunkhrunk..”” = = ff  ((gg  ss))
–– ((ff  gg))  ss would mean something differentwould mean something different
–– ff  gg  ss would be ambiguouswould be ambiguous

•• By convention, By convention, ““¬”¬” takes takes precedenceprecedence over over
both both ““”” and and ““””..
–– ¬¬s s  ff means (means (¬¬ss))  f f , , not not ¬¬ ((s s  ff))

§ 1.1 – Propositional Logic: Operators

15

Chapter 1

(c)2001-2003, Michael P. Frank

A Simple Exercise

Let Let pp==““It rained last nightIt rained last night””, ,
qq==““The sprinklers came on last night,The sprinklers came on last night,””
rr==““The lawn was wet this morning.The lawn was wet this morning.””

Translate each of the following into English:Translate each of the following into English:
¬¬pp = =
rr  ¬¬pp = =
¬¬ r r  pp  q =q =

“It didn’t rain last night.”
“The lawn was wet this morning, and
it didn’t rain last night.”

“Either the lawn wasn’t wet this
morning, or it rained last night, or
the sprinklers came on last night.”
§ 1.1 – Propositional Logic: Operators

16

Chapter 1

(c)2001-2003, Michael P. Frank

The Exclusive Or Operator

The binary The binary exclusiveexclusive--or operatoror operator ““”” ((XORXOR))
combines two propositions to form their combines two propositions to form their
logical logical ““exclusive orexclusive or”” ((exjunctionexjunction?).?).

pp = = ““I will earn an A in this course,I will earn an A in this course,””
qq == ““I will drop this course,I will drop this course,””
pp  qq = = ““I will either earn an A for this I will either earn an A for this

course, or I will drop it (course, or I will drop it (but not bothbut not both!)!)””

§ 1.1 – Propositional Logic: Operators

17

Chapter 1

(c)2001-2003, Michael P. Frank

•• Note that Note that ppqq meansmeans
that that pp is is truetrue, or , or qq isis
truetrue, but , but not bothnot both!!

•• This operation isThis operation is
called called exclusive orexclusive or,,
because it because it excludesexcludes thethe
possibility that both possibility that both pp and and qq are true.are true.

•• ““¬¬”” and and ““”” together are together are notnot universal.universal.

Exclusive-Or Truth Table

p q pq
F F
F T
T F
T T

§ 1.1 – Propositional Logic: Operators

18

Chapter 1

(c)2001-2003, Michael P. Frank

Note that Note that EnglishEnglish ““oror”” can be ambiguous can be ambiguous
regarding the regarding the ““bothboth”” case!case!

““Pat is a singer orPat is a singer or
Pat is a writer.Pat is a writer.”” --

““Pat is a man orPat is a man or
Pat is a woman.Pat is a woman.”” --

Need context to disambiguate the meaning!Need context to disambiguate the meaning!
For this class, assume For this class, assume ““oror”” means means inclusiveinclusive..

Natural Language is Ambiguous

p q p "or" q
F F
F T
T F
T T





§ 1.1 – Propositional Logic: Operators

19

Chapter 1

(c)2001-2003, Michael P. Frank

The Implication Operator

The The implicationimplication p p  qq states that states that pp implies implies qq..
I.e.I.e., If , If pp is true, then is true, then qq is true; is true; but if but if pp is not is not

true, then true, then qq could be either true or falsecould be either true or false..
E.g.E.g., let , let p p = = ““You study hard.You study hard.””

q q = = ““You will get a good grade.You will get a good grade.””
p p  q = q = ““If you study hard, then you will get If you study hard, then you will get

a good grade.a good grade.”” (else, it could go either way)(else, it could go either way)

§ 1.1 – Propositional Logic: Operators

antecedent consequent

20

Chapter 1

(c)2001-2003, Michael P. Frank

Implication Truth Table

•• p p  q q is is falsefalse onlyonly whenwhen
pp is true but is true but qq is is notnot true.true.

•• p p  q q does does not not saysay
that that pp causescauses qq!!

•• p p  q q does does not not requirerequire
that that pp or or qq are ever trueare ever true!!

•• E.g.E.g. ““(1=0) (1=0)  pigs can flypigs can fly”” is TRUE!is TRUE!

p q pq
F F
F T
T F
T T

§ 1.1 – Propositional Logic: Operators

21

Chapter 1

(c)2001-2003, Michael P. Frank

Examples of Implications

•• ““If this lecture ends, then the sun will rise If this lecture ends, then the sun will rise
tomorrow.tomorrow.”” TrueTrue or or FalseFalse??

•• ““If Tuesday is a day of the week, then I am If Tuesday is a day of the week, then I am
a penguin.a penguin.”” TrueTrue or or FalseFalse??

•• ““If 1+1=6, then Bush is president.If 1+1=6, then Bush is president.””
TrueTrue or or FalseFalse??

•• ““If the moon is made of green cheese, then If the moon is made of green cheese, then
I am richer than Bill Gates.I am richer than Bill Gates.”” True True oror FalseFalse??

§ 1.1 – Propositional Logic: Operators

22

Chapter 1

(c)2001-2003, Michael P. Frank

Why does this seem wrong?

•• Consider a sentence like,Consider a sentence like,
–– ““If I wear a red shirt tomorrow, then the U.S. will If I wear a red shirt tomorrow, then the U.S. will

attack Iraq the same day.attack Iraq the same day.””

•• In logic, we consider the sentence In logic, we consider the sentence TrueTrue so long as so long as
either I doneither I don’’t wear a red shirt, or the US attacks.t wear a red shirt, or the US attacks.

•• But in normal English conversation, if I were to But in normal English conversation, if I were to
make this claim, you would think I was lying.make this claim, you would think I was lying.
–– Why this discrepancy between logic & language?Why this discrepancy between logic & language?

§ 1.1 – Propositional Logic: Operators

23

Chapter 1

(c)2001-2003, Michael P. Frank

Resolving the Discrepancy
•• In English, a sentence In English, a sentence ““if if pp then then qq”” usually really usually really

implicitlyimplicitly means something like,means something like,
–– ““In all possible situationsIn all possible situations, if , if pp then then qq..””

•• That is, That is, ““For For pp to be true and to be true and qq false is false is impossibleimpossible..””
•• Or, Or, ““I I guaranteeguarantee that no matter what, if that no matter what, if pp, then , then qq..””

•• This can be expressed in This can be expressed in predicatepredicate logiclogic as:as:
–– ““For all situations For all situations ss, if , if pp is true in situation is true in situation ss, then , then qq is also is also

true in situation true in situation ss””
–– Formally, we could write: Formally, we could write: ss, , PP((ss)) →→ QQ((ss))

•• This sentence is This sentence is logically logically FalseFalse in our example, in our example,
because because for me to wear a red shirtfor me to wear a red shirt andand the U.S. the U.S. notnot to to
attack Iraqattack Iraq is a is a possiblepossible (even if not actual) situation.(even if not actual) situation.
–– Natural language and logic then agree with each other.Natural language and logic then agree with each other.

24

Chapter 1

(c)2001-2003, Michael P. Frank

English Phrases Meaning p  q

•• ““pp implies implies qq””
•• ““if if pp, then , then qq””
•• ““if if pp, , qq””
•• ““when when pp, , qq””
•• ““whenever whenever pp, , qq””
•• ““p p only if only if qq”” ““
•• p p is sufficient for is sufficient for qq””
•• ““q q if if pp””

•• ““qq when when pp””
•• ““qq whenever whenever pp””
•• ““qq is necessary for is necessary for pp””
•• ““qq follows from follows from pp””
•• ““q q is implied by is implied by pp””
We will see some equivalent We will see some equivalent

logic expressions later.logic expressions later.

§ 1.1 – Propositional Logic: Operators

25

Chapter 1

(c)2001-2003, Michael P. Frank

Converse, Inverse, Contrapositive

Some terminology, for an implication Some terminology, for an implication p p  qq::
•• Its Its converseconverse is: is:
•• Its Its inverseinverse is: is:
•• Its Its contrapositivecontrapositive::
•• One of these three has the One of these three has the same meaningsame meaning

(same truth table) as (same truth table) as pp  qq. Can you figure . Can you figure
out which?out which?

§ 1.1 – Propositional Logic: Operators

26

Chapter 1

(c)2001-2003, Michael P. Frank

How do we know for sure?

Proving the equivalence of Proving the equivalence of p p  q q and its and its
contrapositivecontrapositive using truth tables:using truth tables:
p q q p pq q p
F F
F T
T F
T T

§ 1.1 – Propositional Logic: Operators

27

Chapter 1

(c)2001-2003, Michael P. Frank

The biconditional operator

The The biconditionalbiconditional p p  qq states that states that pp is trueis true if and if and
only ifonly if (IFF)(IFF) qq is trueis true..

p p = = ““Bush wins the 2004 election.Bush wins the 2004 election.””
qq == ““Bush will be president for all of 2005.Bush will be president for all of 2005.””
p p  q = q = ““If, and only if, Bush wins the 2004 If, and only if, Bush wins the 2004

election, Bush will be president for all of 2005.election, Bush will be president for all of 2005.””

2004

I’m still
here!

2005

28

Chapter 1

(c)2001-2003, Michael P. Frank

Biconditional Truth Table

•• p p  qq means that means that pp and and qq
have the have the samesame truth valuetruth value..

•• Note this truth table is theNote this truth table is the
exact exact oppositeopposite of of ’’s!s!
–– p p  q q means means ¬¬((p p  qq))

•• p p  q q does does not not implyimply
pp and and qq are true, or cause each other.are true, or cause each other.

p q p  q
F F
F T
T F
T T

§ 1.1 – Propositional Logic: Operators

29

Chapter 1

(c)2001-2003, Michael P. Frank

Boolean Operations Summary

•• We have seen 1 unary operator (out of the 4 We have seen 1 unary operator (out of the 4
possible) and 5 binary operators (out of the possible) and 5 binary operators (out of the
16 possible). Their truth tables are below.16 possible). Their truth tables are below.
p q p pq pq pq pq pq
F F T F F F T T
F T T F T T T F
T F F F T T F F
T T F T T F T T

§ 1.1 – Propositional Logic: Operators

30

Chapter 1

(c)2001-2003, Michael P. Frank

Some Alternative Notations

Name: not and or xor implies iff
Propositional logic:      
Boolean algebra: p pq + 
C/C++/Java (wordwise): ! && || != ==
C/C++/Java (bitwise): ~ & | ^
Logic gates:

§ 1.1 – Propositional Logic: Operators

31

Chapter 1

(c)2001-2003, Michael P. Frank

Bits and Bit Operations

•• A A bitbit is a is a bibinary (base 2) dignary (base 2) digitit: 0 or 1.: 0 or 1.
•• Bits may be used to represent truth values.Bits may be used to represent truth values.
•• By convention: By convention:

0 represents 0 represents ““falsefalse””; 1 represents ; 1 represents ““truetrue””..
•• Boolean algebraBoolean algebra is like ordinary algebra is like ordinary algebra

except that variables stand for bits, except that variables stand for bits, + means + means
““oror””, and , and multiplication means multiplication means ““andand””..
–– See chapter 10 for more details.See chapter 10 for more details.

John Tukey
(1915-2000)

§ 1.1 – Bits

32

Chapter 1

(c)2001-2003, Michael P. Frank

Bit Strings

•• AA Bit stringBit string of of length nlength n is an ordered series is an ordered series
or sequence of or sequence of nn00 bits.bits.
–– More on sequences in More on sequences in §§2.4.2.4.

•• By convention, bit strings are written left to By convention, bit strings are written left to
right: right: e.g.e.g. the first bit of the first bit of ““10011010101001101010”” is 1.is 1.

•• When a bit string represents a baseWhen a bit string represents a base--2 2
number, by convention the first bit is the number, by convention the first bit is the
most significantmost significant bit. bit. Ex. Ex. 1101110122=8+4+1=13.=8+4+1=13.

§ 1.1 – Bits

33

Chapter 1

(c)2001-2003, Michael P. Frank

Counting in Binary

•• Did you know that you can count Did you know that you can count
to 1,023 just using two hands?to 1,023 just using two hands?
–– How? Count in binary!How? Count in binary!

•• Each finger (up/down) represents 1 bit.Each finger (up/down) represents 1 bit.

•• To increment: Flip the rightmost (lowTo increment: Flip the rightmost (low--order) bit.order) bit.
–– If it changes 1If it changes 1→→0, then also flip the next bit to the left,0, then also flip the next bit to the left,

•• If that bit changes 1If that bit changes 1→→0, then flip the next one, 0, then flip the next one, etc.etc.

•• 0000000000, 0000000001, 0000000010, 0000000000, 0000000001, 0000000010, ……
……, 1111111101, 1111111110, 1111111111 , 1111111101, 1111111110, 1111111111

§ 1.1 – Bits

34

Chapter 1

(c)2001-2003, Michael P. Frank

Bitwise Operations

•• Boolean operations can be extended to Boolean operations can be extended to
operate on bit strings as well as single bits.operate on bit strings as well as single bits.

•• E.g.:E.g.:
01 1011 011001 1011 0110
11 0001 110111 0001 1101
11 1011 1111 BitBit--wise ORwise OR
01 0001 0100 BitBit--wise ANDwise AND
10 1010 1011 BitBit--wise XORwise XOR

§ 1.1 – Bits

35

Chapter 1

(c)2001-2003, Michael P. Frank

End of §1.1

You have learned about:You have learned about:
•• Propositions: What Propositions: What

they are.they are.
•• Propositional logic Propositional logic

operatorsoperators’’
–– Symbolic notations.Symbolic notations.
–– English equivalents.English equivalents.
–– Logical meaning.Logical meaning.
–– Truth tables.Truth tables.

•• Atomic vs. compound Atomic vs. compound
propositions.propositions.

•• Alternative notations.Alternative notations.
•• Bits and bitBits and bit--strings.strings.
•• Next section: Next section: §§1.21.2

–– Propositional Propositional
equivalences.equivalences.

–– How to prove them.How to prove them.

36

Chapter 1

(c)2001-2003, Michael P. Frank

Propositional Equivalence (§1.2)

Two Two syntacticallysyntactically ((i.e., i.e., textually) different textually) different
compound propositions may be the compound propositions may be the
semanticallysemantically identical (identical (i.e., i.e., have the same have the same
meaning). We call them meaning). We call them equivalentequivalent. Learn:. Learn:

•• Various Various equivalence rulesequivalence rules oror lawslaws..
•• How to How to proveprove equivalences using equivalences using symbolic symbolic

derivationsderivations..

§ 1.2 – Propositional Logic: Equivalences

37

Chapter 1

(c)2001-2003, Michael P. Frank

Tautologies and Contradictions

A A tautologytautology is a compound proposition that is is a compound proposition that is
truetrue no matter whatno matter what the truth valuesthe truth values of its of its
atomic propositions are!atomic propositions are!

Ex.Ex. p p  pp [What is its truth table?][What is its truth table?]
A A contradictioncontradiction is a compound proposition is a compound proposition

that is that is falsefalse no matter whatno matter what! ! Ex.Ex. p p  p p
[Truth table?][Truth table?]

Other compound props. are Other compound props. are contingenciescontingencies..

§ 1.2 – Propositional Logic: Equivalences

38

Chapter 1

(c)2001-2003, Michael P. Frank

Logical Equivalence

Compound proposition Compound proposition pp is is logically logically
equivalent equivalent to compound proposition to compound proposition qq, ,
written written ppqq, , IFFIFF the compound the compound
proposition proposition ppq q is a tautologyis a tautology..

Compound propositions Compound propositions pp and and q q are logically are logically
equivalent to each other equivalent to each other IFFIFF pp and and q q
contain the same truth valuescontain the same truth values as each as each
other in other in allall rows of their truth tables.rows of their truth tables.

§ 1.2 – Propositional Logic: Equivalences

39

Chapter 1

(c)2001-2003, Michael P. Frank

Ex.Ex. Prove that Prove that ppqq  ((p p  qq).).

p q ppqq pp qq pp  qq ((pp  qq))
F F
F T
T F
T T

Proving Equivalence
via Truth Tables

§ 1.2 – Propositional Logic: Equivalences

40

Chapter 1

(c)2001-2003, Michael P. Frank

Equivalence Laws

•• These are similar to the arithmetic identities These are similar to the arithmetic identities
you may have learned in algebra, but for you may have learned in algebra, but for
propositional equivalences instead.propositional equivalences instead.

•• They provide a pattern or template that can They provide a pattern or template that can
be used to match all or part of a much more be used to match all or part of a much more
complicated proposition and to find an complicated proposition and to find an
equivalence for it.equivalence for it.

§ 1.2 – Propositional Logic: Equivalences

41

Chapter 1

(c)2001-2003, Michael P. Frank

Equivalence Laws - Examples

•• IdentityIdentity: : ppT T  ppF F 
•• DominationDomination: : ppT T  ppFF 
•• IdempotentIdempotent: : ppp p  pppp 
•• Double negation: Double negation: p p 
•• Commutative: pCommutative: pq q  qqp pp pq q  qqpp
•• Associative: Associative: ((ppqq))rr  pp((qqrr))

((ppqq))rr  pp((qqrr))

§ 1.2 – Propositional Logic: Equivalences

42

Chapter 1

(c)2001-2003, Michael P. Frank

More Equivalence Laws

•• DistributiveDistributive: : pp((qqrr)) 
pp((qqrr)) 

•• De MorganDe Morgan’’ss::
((ppqq)) 
((ppqq)) 

•• Trivial tautology/contradictionTrivial tautology/contradiction::
pp  pp  pp  pp 

§ 1.2 – Propositional Logic: Equivalences

Augustus
De Morgan
(1806-1871)

43

Chapter 1

(c)2001-2003, Michael P. Frank

Defining Operators via Equivalences

Using equivalences, we can Using equivalences, we can definedefine operators operators
in terms of other operators.in terms of other operators.

•• Exclusive or: Exclusive or: ppqq  ((ppqq))((ppqq))
ppqq  ((ppqq))((qqpp))

•• Implies: Implies: ppq q 
•• BiconditionalBiconditional: : ppq q  ((ppqq))  ((qqpp))

ppq q 

§ 1.2 – Propositional Logic: Equivalences

44

Chapter 1

(c)2001-2003, Michael P. Frank

An Example Problem

•• Check using a symbolic derivation whether Check using a symbolic derivation whether
((p p  qq))  ((pp  rr))  p p  qq  rr..

((p p  qq))  ((pp  rr)) 
[Expand definition of [Expand definition of ]]
[[DefnDefn. of . of ]]  ((p p  qq))  ((((pp  rr))  ((pp  rr))))
[[DeMorganDeMorgan’’ss Law]Law]

  ((((pp  rr))  ((pp  rr))))
 [associative law] [associative law] cont.cont.

§ 1.2 – Propositional Logic: Equivalences

45

Chapter 1

(c)2001-2003, Michael P. Frank

Example Continued...

((p p  qq))  ((((pp  rr))  ((pp  rr))))  [[ commutes]commutes]
  ((((pp  rr))  ((pp  rr)))) [[ associative]associative]
 qq  ((pp  ((((pp  rr))  ((pp  rr)))))) [[distribdistrib. .  over over ]]
 qq  ((((pp  ((pp  rr))))  ((pp  ((pp  rr))))))
[assoc.] [assoc.]  qq  (() (()  ())())
[[trivailtrivail taut.] taut.]  qq  (() (()  ((pp  ((pp  rr))))))
[domination][domination]  qq  (( ((pp  ((pp  rr))))))
[identity] [identity]  qq  ((pp  ((pp  rr))))  cont.cont.

§ 1.2 – Propositional Logic: Equivalences

46

Chapter 1

(c)2001-2003, Michael P. Frank

End of Long Example

qq  ((pp  ((pp  rr))))
[[DeMorganDeMorgan’’ss]]  qq  ((pp  ())())
[Assoc.] [Assoc.]  qq  ((((pp  pp))  rr))
[Idempotent] [Idempotent]  qq  (( rr))
[Assoc.] [Assoc.]  ((qq  pp))  r r
[[CommutCommut.] .]  p p  qq  r r
Q.E.D. (Q.E.D. (quodquod eraterat demonstrandumdemonstrandum))

§ 1.2 – Propositional Logic: Equivalences
(Which was to be shown.)

47

Chapter 1

(c)2001-2003, Michael P. Frank

Review: Propositional Logic
(§1.1-1.2)

•• Atomic propositions: Atomic propositions: pp, , qq, , rr, , ……
•• Boolean operators:Boolean operators:      
• Compound propositions: s : (p  qq))  rr
•• Equivalences:Equivalences: ppq q  ((p p  qq))
•• Proving equivalences using:Proving equivalences using:

–– Truth tablesTruth tables..
–– Symbolic derivations. Symbolic derivations. pp  q q  r r ……

§ 1.2 – Propositional Logic

48

Chapter 1

(c)2001-2003, Michael P. Frank

Predicate Logic (§1.3)

•• Predicate logicPredicate logic is an extension of is an extension of
propositional logic that permits concisely propositional logic that permits concisely
reasoning about whole reasoning about whole classesclasses of entities.of entities.

•• Propositional logic (recall) treats simple Propositional logic (recall) treats simple
propositionspropositions (sentences) as atomic entities.(sentences) as atomic entities.

•• In contrast, In contrast, predicate predicate logic distinguishes logic distinguishes
the the subjectsubject of a sentence from its of a sentence from its predicatepredicate..
–– Remember these English grammar terms?Remember these English grammar terms?

§ 1.3 – Predicate Logic

49

Chapter 1

(c)2001-2003, Michael P. Frank

Applications of Predicate Logic

It is It is thethe formal notation for writing perfectly formal notation for writing perfectly
clear, concise, and unambiguous clear, concise, and unambiguous
mathematical mathematical definitionsdefinitions, , axiomsaxioms, and , and
theorems theorems (more on these in chapter 3) for (more on these in chapter 3) for
any any branch of mathematics. branch of mathematics.

Predicate logic with function symbols, the Predicate logic with function symbols, the ““==”” operator, and operator, and
a few proofa few proof--building rules is sufficient for defining building rules is sufficient for defining anyany
conceivable mathematical system, and for proving conceivable mathematical system, and for proving
anything that can be proved within that system!anything that can be proved within that system!

§ 1.3 – Predicate Logic

50

Chapter 1

(c)2001-2003, Michael P. Frank

Other Applications

•• Predicate logic is the foundation of thePredicate logic is the foundation of the
field of field of mathematical logicmathematical logic, which , which
culminated in culminated in GGöödeldel’’s incompleteness s incompleteness
theoremtheorem, which revealed the ultimate , which revealed the ultimate
limits of mathematical thought:limits of mathematical thought:
–– Given any finitely describable, consistent Given any finitely describable, consistent

proof procedure, there will still be proof procedure, there will still be somesome
true statements that can true statements that can never be provennever be proven
by that procedure.by that procedure.

•• I.e.I.e., we can, we can’’t discover t discover allall mathematical truths, mathematical truths,
unless we sometimes resort to making unless we sometimes resort to making guesses.guesses.

§ 1.3 – Predicate Logic

Kurt Gödel
1906-1978

51

Chapter 1

(c)2001-2003, Michael P. Frank

Practical Applications

•• Basis for clearly expressed formal Basis for clearly expressed formal
specifications for any complex system.specifications for any complex system.

•• Basis for Basis for automatic theorem automatic theorem proversprovers and and
many other Artificial Intelligence systems.many other Artificial Intelligence systems.

•• Supported by some of the more Supported by some of the more
sophisticated sophisticated database query enginesdatabase query engines and and
container class libraries container class libraries
(these are types of programming tools).(these are types of programming tools).

§ 1.3 – Predicate Logic

52

Chapter 1

(c)2001-2003, Michael P. Frank

Subjects and Predicates

•• In the sentence In the sentence ““The dog is sleepingThe dog is sleeping””::
–– The phrase The phrase ““the dogthe dog”” denotes the denotes the subjectsubject --

the the objectobject or or entity entity that the sentence is about.that the sentence is about.
–– The phrase The phrase ““is sleepingis sleeping”” denotes the denotes the predicatepredicate--

a property that is true a property that is true ofof the subject.the subject.

•• In predicate logic, a In predicate logic, a predicatepredicate is modeled as is modeled as
a a functionfunction PP((··)) from objects to propositions.from objects to propositions.
–– PP((xx) =) = ““xx is sleepingis sleeping”” (where (where xx is any object).is any object).

§ 1.3 – Predicate Logic

53

Chapter 1

(c)2001-2003, Michael P. Frank

More About Predicates

•• Convention: Lowercase variables Convention: Lowercase variables xx, , yy, , z...z... denote denote
objects/entitiesobjects/entities; uppercase variables ; uppercase variables PP, , QQ, , RR……
denote propositional functions (predicates)denote propositional functions (predicates)..

•• Keep in mind that the Keep in mind that the result ofresult of applyingapplying a a
predicate predicate PP to an object to an object xx is the is the proposition Pproposition P((xx).).
But the predicate But the predicate PP itselfitself ((e.g. Pe.g. P==““is sleepingis sleeping””) is) is
not not a proposition (not a complete sentence).a proposition (not a complete sentence).
–– E.g.E.g. if if PP((xx) =) = ““xx is a prime numberis a prime number””,,

PP(3) is the (3) is the propositionproposition ““3 is a prime number.3 is a prime number.””

§ 1.3 – Predicate Logic

54

Chapter 1

(c)2001-2003, Michael P. Frank

Propositional Functions

•• Predicate logic Predicate logic generalizesgeneralizes the grammatical the grammatical
notion of a predicate to also include notion of a predicate to also include
propositional functions of propositional functions of anyany number of number of
arguments, each of which may take arguments, each of which may take anyany
grammatical role that a noun can take.grammatical role that a noun can take.
–– E.g.E.g. let let PP((xx,,y,zy,z) =) = ““x x gavegave y y the gradethe grade zz””, then if, then if

x=x=““MikeMike””, , yy==““MaryMary””, , zz==““AA””, then , then PP((xx,,yy,,zz) =) =
““Mike gave Mary the grade A.Mike gave Mary the grade A.””

§ 1.3 – Predicate Logic

55

Chapter 1

(c)2001-2003, Michael P. Frank

Universes of Discourse (U.D.s)

•• The power of distinguishing objects from The power of distinguishing objects from
predicates is that it lets you state things predicates is that it lets you state things
about about manymany objects at once.objects at once.

•• E.g., let E.g., let PP((xx)=)=““xx+1>+1>xx””. We can then say,. We can then say,
““For For anyany number number xx, , PP((xx) is true) is true”” instead ofinstead of
((00+1>+1>00))  ((11+1>+1>11))  ((22+1>+1>22)) 

•• The collection of values that a variable The collection of values that a variable xx
can take is called can take is called xx’’s s universe of discourseuniverse of discourse..

§ 1.3 – Predicate Logic

56

Chapter 1

(c)2001-2003, Michael P. Frank

Quantifier Expressions

•• QuantifiersQuantifiers provide a notation that allows provide a notation that allows
us to us to quantify quantify (count) (count) how manyhow many objectsobjects in in
the the univuniv. of disc. satisfy a given predicate.. of disc. satisfy a given predicate.

•• ““”” is the is the FORFORLLLL or or universaluniversal quantifierquantifier..
xx PP((xx) means) means for allfor all xx in the u.d., in the u.d., PP holds.holds.

•• ““”” is the is the XISTSXISTS or or existentialexistential quantifierquantifier..
x Px P((xx) means) means there there existsexists an an xx in the u.d. in the u.d.
(that is, 1 or more) (that is, 1 or more) such thatsuch that PP((xx) is true.) is true.

§ 1.3 – Predicate Logic

57

Chapter 1

(c)2001-2003, Michael P. Frank

The Universal Quantifier 

•• Example: Example:
Let the u.d. of Let the u.d. of xx be be parking spaces at UFparking spaces at UF..
Let Let PP((xx) be the) be the predicatepredicate ““xx is full.is full.””
Then the Then the universal quantification of Puniversal quantification of P((xx),),
xx PP((xx), is the), is the proposition:proposition:
–– ““All parking spaces at UF are full.All parking spaces at UF are full.””
–– i.e.i.e., , ““Every parking space at UF is full.Every parking space at UF is full.””
–– i.e.i.e., , ““For each parking space at UF, that space is full.For each parking space at UF, that space is full.””

§ 1.3 – Predicate Logic

58

Chapter 1

(c)2001-2003, Michael P. Frank

The Existential Quantifier 

•• Example: Example:
Let the u.d. of Let the u.d. of xx be be parking spaces at UFparking spaces at UF..
Let Let PP((xx) be the) be the predicatepredicate ““xx is full.is full.””
Then the Then the existential quantification of Pexistential quantification of P((xx),),
xx PP((xx), is the), is the propositionproposition::
–– ““Some parking space at UF is full.Some parking space at UF is full.””
–– ““There is a parking space at UF that is full.There is a parking space at UF that is full.””
–– ““At least one parking space at UF is full.At least one parking space at UF is full.””

§ 1.3 – Predicate Logic

59

Chapter 1

(c)2001-2003, Michael P. Frank

Free and Bound Variables

•• An expression like An expression like PP((xx) is said to have a) is said to have a
free variablefree variable xx (meaning, (meaning, xx is undefined)is undefined)..

•• A quantifier (either A quantifier (either  or or )) operatesoperates on an on an
expression having one or more free expression having one or more free
variables, and variables, and bindsbinds one or more of those one or more of those
variables, to produce an expression having variables, to produce an expression having
one or more one or more boundbound variablesvariables..

§ 1.3 – Predicate Logic

60

Chapter 1

(c)2001-2003, Michael P. Frank

Example of Binding

•• PP((x,yx,y) has 2 free variables,) has 2 free variables, xx and and yy..
•• xx PP((xx,,yy) has 1 free variable, and one bound) has 1 free variable, and one bound

variable. [Which is which?]variable. [Which is which?]
•• ““PP((xx), where), where xx=3=3”” is another way to bind is another way to bind xx..
•• An expression with An expression with zerozero free variables is a bonafree variables is a bona--

fide (actual) proposition.fide (actual) proposition.
•• An expression with An expression with one or moreone or more free variables is free variables is

still only a predicate: still only a predicate: xx PP((xx,,yy))

§ 1.3 – Predicate Logic

61

Chapter 1

(c)2001-2003, Michael P. Frank

Nesting of Quantifiers

Example: Let the u.d. of Example: Let the u.d. of xx & & yy be people.be people.
Let Let LL((xx,,yy)=)=““x x likes likes yy”” (a predicate w. 2 f.v.(a predicate w. 2 f.v.’’s)s)
Then Then y Ly L((x,yx,y) =) = ““There is someone whom There is someone whom xx

likes.likes.”” (A predicate w. 1 free variable, (A predicate w. 1 free variable, xx))
Then Then xx ((y Ly L((x,yx,y)) =)) =

““Everyone has someone whom they like.Everyone has someone whom they like.””
(A __________ with ___ free variables.)(A __________ with ___ free variables.)

§ 1.4 – Nested Quantifiers

62

Chapter 1

(c)2001-2003, Michael P. Frank

Review: Predicate Logic (§1.3)

•• Objects Objects xx, , yy, , zz, , ……
•• Predicates Predicates PP, , QQ, , RR, , …… are functions are functions

mapping objects mapping objects xx to propositions to propositions PP((xx).).
•• MultiMulti--argument predicates argument predicates PP((xx, , yy).).
•• Quantifiers: [Quantifiers: [xx PP((xx)] :)] :≡≡ ““For all For all xx’’s, s,

PP((xx).).””
[[x Px P((xx)] :)] :≡≡ ““There is an There is an xx such that such that PP((xx).).””

•• Universes of discourse, bound & free vars.Universes of discourse, bound & free vars.

63

Chapter 1

(c)2001-2003, Michael P. Frank

Quantifier Exercise

If If RR((xx,,yy)=)=““xx relies upon relies upon yy,,”” express the express the
following in unambiguous English:following in unambiguous English:

xx((y Ry R((x,yx,y))=))=
yy((xx RR((x,yx,y))=))=
xx((y Ry R((x,yx,y))=))=
yy((x Rx R((x,yx,y))=))=
xx((yy RR((x,yx,y))=))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom
everyone relies upon (including himself)!
There’s some needy person who relies
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody,
(including themselves)!
§ 1.4 – Nested Quantifiers

64

Chapter 1

(c)2001-2003, Michael P. Frank

Natural language is ambiguous!

•• ““Everybody likes somebody.Everybody likes somebody.””
–– For everybody, there is somebody they like,For everybody, there is somebody they like,

•• xx yy LikesLikes((xx,,yy))

–– or, there is somebody (a popular person) whom or, there is somebody (a popular person) whom
everyone likes?everyone likes?

•• yy xx LikesLikes((xx,,yy))

•• ““Somebody likes everybody.Somebody likes everybody.””
–– Same problem: Depends on context, emphasis.Same problem: Depends on context, emphasis.

[Probably more likely.]

§ 1.4 – Nested Quantifiers

65

Chapter 1

(c)2001-2003, Michael P. Frank

Game Theoretic Semantics

•• Thinking in terms of a competitive game can help you tell Thinking in terms of a competitive game can help you tell
whether a proposition with nested quantifiers is true.whether a proposition with nested quantifiers is true.

•• The game has two players, The game has two players, both with the same knowledgeboth with the same knowledge::
–– Verifier: Wants to demonstrate that the proposition is true.Verifier: Wants to demonstrate that the proposition is true.
–– Falsifier: Wants to demonstrate that the proposition is false.Falsifier: Wants to demonstrate that the proposition is false.

•• The Rules of the Game The Rules of the Game ““Verify or FalsifyVerify or Falsify””::
–– Read the quantifiers from Read the quantifiers from left to rightleft to right, picking values of variables., picking values of variables.
–– When you see When you see ““””, the falsifier gets to select the value., the falsifier gets to select the value.
–– When you see When you see ““””, the verifier gets to select the value., the verifier gets to select the value.

•• If the verifier If the verifier can always wincan always win, then the proposition is true., then the proposition is true.
•• If the falsifier If the falsifier can always wincan always win, then it is false., then it is false.

§ 1.4 – Nested Quantifiers

66

Chapter 1

(c)2001-2003, Michael P. Frank

Let’s Play, “Verify or Falsify!”

Let B(x,y) :≡ “x’s birthday is followed within 7 days
by y’s birthday.”

Suppose I claim that among you:
x y B(x,y)

Your turn, as falsifier:
You pick any x → (so-and-so)

y B(so-and-so,y)
My turn, as verifier:

I pick any y → (such-and-such)

B(so-and-so,such-and-such)

• Let’s play it in class.
• Who wins this game?
• What if I switched the

quantifiers, and I
claimed that
y x B(x,y)?

Who wins in that
case?

§ 1.4 – Nested Quantifiers

67

Chapter 1

(c)2001-2003, Michael P. Frank

Still More Conventions

•• Sometimes the universe of discourse is Sometimes the universe of discourse is
restricted within the quantification, restricted within the quantification, e.g.e.g.,,
–– x>x>0 0 PP((xx) is shorthand for) is shorthand for

““For all For all xx that are greater than zero, that are greater than zero, PP((xx).).””
==x x (())

–– x>x>0 0 PP((xx) is shorthand for) is shorthand for
““There is an There is an x x greater than zero such that greater than zero such that PP((xx).).””
==x x (())

§ 1.4 – Nested Quantifiers

68

Chapter 1

(c)2001-2003, Michael P. Frank

More to Know About Binding

•• xx x x PP((xx)) -- xx is not a free variable in is not a free variable in
x x PP((xx), therefore the), therefore the xx binding binding isnisn’’t usedt used..

•• ((xx PP((xx))))  Q(Q(xx)) -- The variable The variable xx is outside is outside
of the of the scopescope of the of the x x quantifier, and is quantifier, and is
therefore free. Not a proposition!therefore free. Not a proposition!

•• ((xx PP((xx))))  ((x x Q(Q(xx)))) –– This is legal, This is legal,
because there are 2 because there are 2 differentdifferent xx’’ss!!

§ 1.4 – Nested Quantifiers

69

Chapter 1

(c)2001-2003, Michael P. Frank

Quantifier Equivalence Laws

•• Definitions of quantifiers: If Definitions of quantifiers: If u.du.d.=.=a,b,ca,b,c,,……
x x PP((xx))  PP(a(a))  PP(b(b))  PP(c(c))  ……
x x PP((xx))  PP(a(a))  PP(b(b))  PP(c(c))  ……

•• From those, we can prove the laws:From those, we can prove the laws:
x x PP((xx)) 
x x PP((xx)) 

•• Which Which propositionalpropositional equivalence laws can equivalence laws can
be used to prove this? be used to prove this?

§ 1.4 – Nested Quantifiers

70

Chapter 1

(c)2001-2003, Michael P. Frank

More Equivalence Laws

•• x x y y PP((xx,,yy))  y y x x PP((xx,,yy))
x x y y PP((xx,,yy))  y y x x PP((xx,,yy))

•• x x ((PP((xx))  QQ((xx))))  ((x x PP((xx))))  ((x x QQ((xx))))
x x ((PP((xx))  QQ((xx))))  ((x x PP((xx))))  ((x x QQ((xx))))

•• Exercise: Exercise:
See if you can prove these yourself.See if you can prove these yourself.

–– What propositional equivalences did you use?What propositional equivalences did you use?

§ 1.4 – Nested Quantifiers

71

Chapter 1

(c)2001-2003, Michael P. Frank

Review: Predicate Logic (§1.3)

•• Objects Objects xx, , yy, , zz, , ……
•• Predicates Predicates PP, , QQ, , RR, , …… are functions are functions

mapping objects mapping objects xx to propositions to propositions PP((xx).).
•• MultiMulti--argument predicates argument predicates PP((xx, , yy).).
•• Quantifiers: (Quantifiers: (xx PP((xx)) =)) =““For all For all xx’’ss, , PP((xx).).””

((x x PP((xx))=))=““There is an There is an xx such that such that PP((xx).).””

§ 1.4 – Nested Quantifiers

72

Chapter 1

(c)2001-2003, Michael P. Frank

More Notational Conventions

•• Quantifiers bind as loosely as needed:Quantifiers bind as loosely as needed:
parenthesize parenthesize x x PP((xx))  Q(Q(xx))

•• Consecutive quantifiers of the same type Consecutive quantifiers of the same type
can be combined: can be combined: x x y y z Pz P((xx,,yy,,zz)) 
x,y,z Px,y,z P((xx,,yy,,zz) or even) or even xyz Pxyz P((xx,,yy,,zz))

•• All quantified expressions can be reducedAll quantified expressions can be reduced
to the canonical to the canonical alternatingalternating form form
xx11xx22xx33xx44…… PP((xx11,, xx22, , xx33, , xx4,4, ……))

()

§ 1.4 – Nested Quantifiers

73

Chapter 1

(c)2001-2003, Michael P. Frank

Defining New Quantifiers

As per their name, quantifiers can be used to As per their name, quantifiers can be used to
express that a predicate is true of any given express that a predicate is true of any given
quantityquantity (number) of objects.(number) of objects.

Define Define !!xx PP((xx) to mean) to mean ““PP((xx) is true of) is true of
exactly oneexactly one xx in the universe of discourse.in the universe of discourse.””

!!xx PP((xx))  x x ((PP((xx))  y y ((PP((yy))  yy xx))))
““There is an There is an xx such that such that PP((xx), where there is), where there is
no no yy such that P(such that P(yy) and) and yy is other than is other than xx..””

§ 1.4 – Nested Quantifiers

74

Chapter 1

(c)2001-2003, Michael P. Frank

Some Number Theory Examples

•• Let u.d. = the Let u.d. = the natural numbersnatural numbers 0, 1, 2, 0, 1, 2, ……
•• ““A number A number xx is is eveneven, , EE((xx), if and only if it is equal), if and only if it is equal

to 2 times some other number.to 2 times some other number.””
x x ((EE((xx))  ((y x=y x=22yy))))

•• ““A number is A number is primeprime, , PP((xx),), iffiff itit’’s greater than 1 s greater than 1
and it isnand it isn’’t the product of two nont the product of two non--unity unity
numbers.numbers.””
x x ((PP((xx))  ((xx>1 >1  yzyz xx==yzyz  yy1 1  zz11))))

§ 1.4 – Nested Quantifiers

75

Chapter 1

(c)2001-2003, Michael P. Frank

Goldbach’s Conjecture (unproven)

Using Using EE((xx) and) and PP((xx) from previous slide,) from previous slide,
EE((xx>2): >2): PP((pp),),PP((qq):): pp++qq = = xx

or, with more explicit notationor, with more explicit notation::
xx [[xx>2 >2  EE((xx)])] →→

pp q Pq P((pp))  PP((qq))  pp++qq = = xx..
““Every even number greater than 2 Every even number greater than 2

is the sum of two primes.is the sum of two primes.””

§ 1.4 – Nested Quantifiers

76

Chapter 1

(c)2001-2003, Michael P. Frank

Calculus Example

•• One way of precisely defining the calculus One way of precisely defining the calculus
concept of a concept of a limitlimit, using quantifiers:, using quantifiers:

 

   
















|)(|||
::0:0

)(lim

Lxfax
x

Lxf
ax

§ 1.4 – Nested Quantifiers

77

Chapter 1

(c)2001-2003, Michael P. Frank

Deduction Example

•• Definitions:Definitions:
s :s :≡≡ Socrates Socrates (ancient Greek philosopher)(ancient Greek philosopher);;
HH((xx) :) :≡≡ ““xx is humanis human””;;
MM((xx) :) :≡≡ ““xx is mortalis mortal””..

•• Premises:Premises:
HH(s) (s) Socrates is human.Socrates is human.
xx HH((xx))MM((xx)) All hAll humans are mortal.umans are mortal.

§ 1.4 – Nested Quantifiers

78

Chapter 1

(c)2001-2003, Michael P. Frank

Deduction Example Continued

Some valid conclusions you can draw:Some valid conclusions you can draw:
HH(s)(s)MM(s) (s) [Instantiate universal.][Instantiate universal.] If Socrates is humanIf Socrates is human

then he is mortal.then he is mortal.
HH(s) (s)  MM(s) (s) Socrates is inhuman or mortal.Socrates is inhuman or mortal.
HH(s) (s)  ((HH(s) (s)  MM(s)) (s))

Socrates is human, and also either inhuman or mortal.Socrates is human, and also either inhuman or mortal.
((HH(s) (s)  HH(s)) (s))  ((HH(s) (s)  MM(s)) (s)) [Apply distributive law.][Apply distributive law.]
FF  ((HH(s) (s)  MM(s)) (s)) [Trivial contradiction.][Trivial contradiction.]
HH(s) (s)  MM(s) (s) [Use identity law.][Use identity law.]
MM(s) (s) Socrates is mortal.Socrates is mortal.

§ 1.4 – Nested Quantifiers

79

Chapter 1

(c)2001-2003, Michael P. Frank

Another Example

•• Definitions: Definitions: HH((xx) :) :≡≡ ““xx is humanis human””; ;
MM((xx) :) :≡≡ ““xx is mortalis mortal””;; GG((xx) :) :≡≡ ““xx is a godis a god””

•• Premises:Premises:
–– xx HH((xx))  MM((xx) () (““Humans are mortalHumans are mortal””) and) and
–– xx GG((xx))  MM((xx) () (““Gods are immortalGods are immortal””).).

•• Show that Show that x x ((HH((xx))  GG((xx))))
((““No human is a god.No human is a god.””))

§ 1.4 – Nested Quantifiers

80

Chapter 1

(c)2001-2003, Michael P. Frank

The Derivation

•• xx HH((xx))MM((xx) and) and xx GG((xx))MM((xx).).
•• xx MM((xx)) [[ContrapositiveContrapositive.].]
•• xx [[GG((xx))MM((xx)])]  [[MM((xx))HH((xx)])]
•• xx GG((xx)) [Transitivity of [Transitivity of .].]
•• xx [Definition of [Definition of .].]
•• xx [[DeMorganDeMorgan’’ss law.]law.]
•• xx GG((xx))  HH((xx)) [An equivalence law.][An equivalence law.]

§ 1.4 – Nested Quantifiers

81

Chapter 1

(c)2001-2003, Michael P. Frank

End of §1.3-1.4, Predicate Logic

•• From these sections you should have learned:From these sections you should have learned:
–– Predicate logic notation & conventionsPredicate logic notation & conventions
–– Conversions: predicate logic Conversions: predicate logic  clear Englishclear English
–– Meaning of quantifiers, equivalencesMeaning of quantifiers, equivalences
–– Simple reasoning with quantifiersSimple reasoning with quantifiers

•• Upcoming topics: Upcoming topics:
–– Introduction to proofIntroduction to proof--writing.writing.
–– Then: Set theory Then: Set theory ––

•• a language for talking about collections of objects.a language for talking about collections of objects.

§ 1.4 – Nested Quantifiers

82

Chapter 1

(c)2001-2003, Michael P. Frank

§1.5-1.7 :
Basic Proof Methods

§ 1.5-1.7 Basic Proof Methods

83

Chapter 1

(c)2001-2003, Michael P. Frank

Nature & Importance of Proofs

• In mathematics, a proof is:
– a correct (well-reasoned, logically valid) and complete

(clear, detailed) argument that rigorously & undeniably
establishes the truth of a mathematical statement.

• Why must the argument be correct & complete?
– Correctness prevents us from fooling ourselves.
– Completeness allows anyone to verify the result.

• In this course (& throughout mathematics), a very
high standard for correctness and completeness of
proofs is demanded!!

§ 1.5-1.7 Basic Proof Methods

84

Chapter 1

(c)2001-2003, Michael P. Frank

Overview of §1.5 -1.7

• Methods of mathematical argument (i.e.,
proof methods) can be formalized in terms
of rules of logical inference.

• Mathematical proofs can themselves be
represented formally as discrete structures.

• We will review both correct & fallacious
inference rules, & several proof methods.

§ 1.5-1.7 Basic Proof Methods

85

Chapter 1

(c)2001-2003, Michael P. Frank

Applications of Proofs

• An exercise in clear communication of logical
arguments in any area of study.

• The fundamental activity of mathematics is the
discovery and elucidation, through proofs, of
interesting new theorems.

• Theorem-proving has applications in program
verification, computer security, automated
reasoning systems, etc.

• Proving a theorem allows us to rely upon on its
correctness even in the most critical scenarios.

§ 1.5-1.7 Basic Proof Methods

86

Chapter 1

(c)2001-2003, Michael P. Frank

Proof Terminology

• Theorem
– A statement that has been proven to be true.

• Axioms, postulates, hypotheses, premises
– Assumptions (often unproven) defining the

structures about which we are reasoning.
• Rules of inference

– Patterns of logically valid deductions from
hypotheses to conclusions.

§ 1.5-1.7 Basic Proof Methods

87

Chapter 1

(c)2001-2003, Michael P. Frank

More Proof Terminology

• Lemma - A minor theorem used as a stepping-
stone to proving a major theorem.

• Corollary - A minor theorem proved as an easy
consequence of a major theorem.

• Conjecture - A statement whose truth value has
not been proven. (A conjecture may be widely
believed to be true, regardless.)

• Theory – The set of all theorems that can be
proven from a given set of axioms.

§ 1.5-1.7 Basic Proof Methods

88

Chapter 1

(c)2001-2003, Michael P. Frank

Graphical Visualization

…

Various Theorems
The Axioms
of the Theory

A Particular TheoryA Particular Theory

A proofA proof

§ 1.5-1.7 Basic Proof Methods

89

Chapter 1

(c)2001-2003, Michael P. Frank

Inference Rules - General Form

• Inference Rule –
– Pattern establishing that if we know that a set

of antecedent statements of certain forms are
all true, then a certain related consequent
statement is true.

• antecedent 1
antecedent 2 …
 consequent “” means “therefore”

§ 1.5 – Inference Rules

90

Chapter 1

(c)2001-2003, Michael P. Frank

Inference Rules & Implications

• Each logical inference rule corresponds to
an implication that is a tautology.

• antecedent 1 Inference rule
antecedent 2 …
 consequent

• Corresponding tautology:
((ante. 1)  (ante. 2)  …)  consequent

§ 1.5 – Inference Rules

91

Chapter 1

(c)2001-2003, Michael P. Frank

Some Inference Rules

• p Rule of Addition
 pq

• pq Rule of Simplification
 p

• p Rule of Conjunction
q

 pq

§ 1.5 – Inference Rules

92

Chapter 1

(c)2001-2003, Michael P. Frank

Modus Ponens & Tollens

• p Rule of modus ponens
pq (a.k.a. law of detachment)
q

• q
pq Rule of modus tollens
p

“the mode of
affirming”

“the mode of denying”

§ 1.5 – Inference Rules

93

Chapter 1

(c)2001-2003, Michael P. Frank

Syllogism Inference Rules

• pq Rule of hypothetical
qr syllogism

pr
• p  q Rule of disjunctive

p syllogism
 q

Aristotle
(ca. 384-322 B.C.)

§ 1.5 – Inference Rules

94

Chapter 1

(c)2001-2003, Michael P. Frank

Formal Proofs

• A formal proof of a conclusion C, given
premises p1, p2,…,pn consists of a sequence
of steps, each of which applies some
inference rule to premises or to previously-
proven statements (as antecedents) to yield
a new true statement (the consequent).

• A proof demonstrates that if the premises
are true, then the conclusion is true.

§ 1.5 – Inference Rules

95

Chapter 1

(c)2001-2003, Michael P. Frank

Formal Proof Example

• Suppose we have the following premises:
“It is not sunny and it is cold.”
“We will swim(p) only if it is sunny(q).”(p -->q)
“If we do not swim, then we will canoe.”
“If we canoe, then we will be home early.”

• Given these premises, prove the theorem
“We will be home early” using inference rules.

§ 1.5 – Inference Rules

96

Chapter 1

(c)2001-2003, Michael P. Frank

Proof Example cont.

• Let us adopt the following abbreviations:
– sunny = “It is sunny”; cold = “It is cold”;

swim = “We will swim”; canoe = “We will
canoe”; early = “We will be home early”.

• Then, the premises can be written as:
(1) sunny  cold (2) swim  sunny
(3) swim  canoe (4) canoe  early

§ 1.5 – Inference Rules

97

Chapter 1

(c)2001-2003, Michael P. Frank

Proof Example cont.

Step Proved by
1. sunny  cold Premise #1.
2. sunny Simplification of 1.
3. swimsunny Premise #2.
4. Modus tollens on 2,3.
5. swimcanoe Premise #3.
6. Modus ponens on 4,5.
7. canoeearly Premise #4.
8. Modus ponens on 6,7.

§ 1.5 – Inference Rules

98

Chapter 1

(c)2001-2003, Michael P. Frank

Inference Rules for Quantifiers

• x P(x)
P(o) (substitute any object o)

• P(g) (for g a general element of u.d.)
x P(x)

• x P(x)
P(c) (substitute a new constant c)

• P(o) (substitute any extant object o)
x P(x)

§ 1.5 – Inference Rules

99

Chapter 1

(c)2001-2003, Michael P. Frank § 1.5 – Inference Rules

Common Fallacies

•• A A fallacyfallacy is an inference rule or other proof is an inference rule or other proof
method that is not logically valid.method that is not logically valid.
–– May yield a false conclusion!May yield a false conclusion!

•• Fallacy of Fallacy of affirming the conclusionaffirming the conclusion::
–– ““ppqq is true, and is true, and qq is true, so is true, so pp must be true.must be true.””

(No, because (No, because FFTT is true.)is true.)
•• Fallacy of Fallacy of denying the hypothesisdenying the hypothesis::

–– ““ppqq is true, and is true, and pp is false, so is false, so qq must be false.must be false.””
(No, again because (No, again because FFTT is true.)is true.)

100

Chapter 1

(c)2001-2003, Michael P. Frank

Circular Reasoning

• The fallacy of (explicitly or implicitly) assuming
the very statement you are trying to prove in the
course of its proof. Example:

• Prove that an integer n is even, if n2 is even.
• Attempted proof: “Assume n2 is even. Then

n2=2k for some integer k. Dividing both sides by n
gives n = (2k)/n = 2(k/n). So there is an integer j
(namely k/n) such that n=2j. Therefore n is even.”

§ 1.5 – Inference Rules

Begs the question: How do
you show that j=k/n=n/2 is an integer,

without first assuming n is even?

101

Chapter 1

(c)2001-2003, Michael P. Frank

Removing the Circularity

Suppose n2 is even 2|n2  n2 mod 2 = 0. Of
course n mod 2 is either 0 or 1. If it’s 1, then n1
(mod 2), so n21 (mod 2), using the theorem that if
ab (mod m) and cd (mod m) then acbd (mod m),
with a=c=n and b=d=1. Now n21 (mod 2) implies
that n2 mod 2 = 1. So by the hypothetical syllogism
rule, (n mod 2 = 1) implies (n2 mod 2 = 1). Since
we know n2 mod 2 = 0  1, by modus tollens we
know that n mod 2  1. So by disjunctive syllogism
we have that n mod 2 = 0 2|n  n is even.

§ 1.5 – Inference Rules

102

Chapter 1

(c)2001-2003, Michael P. Frank

Proof Methods for Implications

For proving implications pq, we have:
• Direct proof: Assume p is true, and prove q.
• Indirect proof: Assume q, and prove p.
• Vacuous proof: Prove p by itself.
• Trivial proof: Prove q by itself.
• Proof by cases:

Show p(a  b), and (aq) and (bq).

§ 1.6 – Introduction to Proofs

103

Chapter 1

(c)2001-2003, Michael P. Frank

Direct Proof Example

• Definition: An integer n is called odd iff n=2k+1
for some integer k; n is even iff n=2k for some k.

• Axiom: Every integer is either odd or even.
• Theorem: (For all numbers n) If n is an odd

integer, then n2 is an odd integer.
• Proof:

§ 1.6 – Introduction to Proofs

104

Chapter 1

(c)2001-2003, Michael P. Frank

Indirect Proof Example

• Theorem: (For all integers n)
If 3n+2 is odd, then n is odd.

• Proof:

§ 1.6 – Introduction to Proofs

105

Chapter 1

(c)2001-2003, Michael P. Frank

Vacuous Proof Example

• Theorem: (For all n) If n is both odd and
even, then n2 = n + n.

• Proof: The statement “n is both odd and
even” is necessarily false, since no number
can be both odd and even. So, the theorem
is vacuously true. □

§ 1.6 – Introduction to Proofs

106

Chapter 1

(c)2001-2003, Michael P. Frank

Trivial Proof Example

• Theorem: (For integers n) If n is the sum
of two prime numbers, then either n is odd
or n is even.

• Proof: Any integer n is either odd or even.
So the conclusion of the implication is true
regardless of the truth of the antecedent.
Thus the implication is true trivially. □

§ 1.6 – Introduction to Proofs

107

Chapter 1

(c)2001-2003, Michael P. Frank

Proof by Contradiction

• A method for proving p.
• Assume p, and prove both q and q for

some proposition q.
• Thus p (q  q)
• (q  q) is a trivial contradition, equal to F
• Thus pF, which is only true if p=F
• Thus p is true.

§ 1.6 – Introduction to Proofs

108

Chapter 1

(c)2001-2003, Michael P. Frank

Review: Proof Methods So Far

• Direct, indirect, vacuous, and trivial proofs
of statements of the form pq.

• Proof by contradiction of any statements.
• Next: Constructive and nonconstructive

existence proofs.

§ 1.7 – Proof Methods

109

Chapter 1

(c)2001-2003, Michael P. Frank

Proving Existentials

• A proof of a statement of the form x P(x)
is called an existence proof.

• If the proof demonstrates how to actually
find or construct a specific element a such
that P(a) is true, then it is a constructive
proof.

• Otherwise, it is nonconstructive.

§ 1.7 – Proof Methods

110

Chapter 1

(c)2001-2003, Michael P. Frank

Constructive Existence Proof

• Theorem: There exists a positive integer n
that is the sum of two perfect cubes in two
different ways:
– equal to j3 + k3 and l3 + m3 where j, k, l, m are

positive integers, and {j,k} ≠ {l,m}
• Proof:

§ 1.7 – Proof Methods

111

Chapter 1

(c)2001-2003, Michael P. Frank

Another Constructive
Existence Proof

• Theorem: For any integer n>0, there exists
a sequence of n consecutive composite
integers.

• Same statement in predicate logic:
n>0 x i (1in)(x+i is composite)

• Proof follows on next slide…

§ 1.7 – Proof Methods

112

Chapter 1

(c)2001-2003, Michael P. Frank

The proof...

• Given n>0, let x = (n + 1)! + 1.
• Let i  1 and i  n, and consider x+i.
• Note x+i =
• Note , since 2  i+1  n+1.
• Also (i+1)|(i+1). So,
•  x+i is composite.
•  n x 1in : x+i is composite. Q.E.D.

§ 1.7 – Proof Methods

113

Chapter 1

(c)2001-2003, Michael P. Frank

Nonconstructive Existence Proof

• Theorem:
“There are infinitely many prime numbers.”

• Any finite set of numbers must contain a maximal
element, so we can prove the theorem if we can
just show that there is no largest prime number.

• I.e., show that for any prime number, there is a
larger number that is also prime.

• More generally: For any number,  a larger prime.
• Formally: Show n p>n : p is prime.

§ 1.7 – Proof Methods

114

Chapter 1

(c)2001-2003, Michael P. Frank § 1.7 – Proof Methods

The proof, using proof by cases...

•• Given Given nn>0, prove there is a prime >0, prove there is a prime pp>>nn. .
•• Consider Consider x x = = nn!+1. Since !+1. Since xx>1, we know >1, we know

((xx is prime)is prime)((x x is composite).is composite).
•• Case 1:Case 1: xx is prime. is prime.

•• Case 2:Case 2: xx has a prime factor has a prime factor pp. .

115

Chapter 1

(c)2001-2003, Michael P. Frank

Limits on Proofs

• Some very simple statements of number
theory haven’t been proved or disproved!
– E.g. Goldbach’s conjecture: Every integer n≥2

is exactly the average of some two primes.
– n≥2  primes p,q: n=(p+q)/2.

• There are true statements of number theory
(or any sufficiently powerful system) that
can never be proved (or disproved) (Gödel).

§ 1.7 – Proof Methods

116

Chapter 1

(c)2001-2003, Michael P. Frank

More Proof Examples

• Quiz question 1a: Is this argument correct or
incorrect?
– “All TAs compose easy quizzes. Ramesh is a TA.

Therefore, Ramesh composes easy quizzes.”

• First, separate the premises from conclusions:
– Premise #1: All TAs compose easy quizzes.
– Premise #2: Ramesh is a TA.
– Conclusion: Ramesh composes easy quizzes.

§ 1.7 – Proof Methods

117

Chapter 1

(c)2001-2003, Michael P. Frank

Answer

Next, re-render the example in logic notation.
• Premise #1: All TAs compose easy quizzes.

– Let U.D. = all people
– Let T(x) :≡ “x is a TA”
– Let E(x) :≡ “x composes easy quizzes”
– Then Premise #1 says: x, T(x)→E(x)

§ 1.7 – Proof Methods

118

Chapter 1

(c)2001-2003, Michael P. Frank

Answer cont…

• Premise #2: Ramesh is a TA.
– Let R :≡ Ramesh
– Then Premise #2 says: T(R)
– And the Conclusion says: E(R)

• The argument is correct, because it can be
reduced to a sequence of applications of
valid inference rules, as follows:

§ 1.7 – Proof Methods

119

Chapter 1

(c)2001-2003, Michael P. Frank

The Proof in Gory Detail

• Statement How obtained
1. x, T(x) → E(x) (Premise #1)
2. T(Ramesh) → E(Ramesh) (Universal

instantiation)
3. T(Ramesh) (Premise #2)
4. E(Ramesh) (Modus Ponens from

statements #2 and #3)

§ 1.7 – Proof Methods

120

Chapter 1

(c)2001-2003, Michael P. Frank

Another example

• Quiz question 2b: Correct or incorrect: At least
one of the 280 students in the class is intelligent.
Y is a student of this class. Therefore, Y is
intelligent.

• First: Separate premises/conclusion,
& translate to logic:
– Premises: (1) x InClass(x)  Intelligent(x)

(2) InClass(Y)
– Conclusion: Intelligent(Y)

§ 1.7 – Proof Methods

121

Chapter 1

(c)2001-2003, Michael P. Frank

Answer

• No, the argument is invalid; we can disprove it
with a counter-example, as follows:

• Consider a case where there is only one intelligent
student X in the class, and X≠Y.
– Then the premise x InClass(x)  Intelligent(x) is true,

by existential generalization of
InClass(X)  Intelligent(X)

– But the conclusion Intelligent(Y) is false, since X is the
only intelligent student in the class, and Y≠X.

• Therefore, the premises do not imply the
conclusion.

§ 1.7 – Proof Methods

122

Chapter 1

(c)2001-2003, Michael P. Frank

Another Example

• Quiz question #2: Prove that the sum of a rational
number and an irrational number is always
irrational.

• First, you have to understand exactly what the
question is asking you to prove:
– “For all real numbers x,y, if x is rational and y is

irrational, then x+y is irrational.”
– x,y: Rational(x)  Irrational(y) → Irrational(x+y)

§ 1.7 – Proof Methods

123

Chapter 1

(c)2001-2003, Michael P. Frank

Answer

• Next, think back to the definitions of the
terms used in the statement of the theorem:
–  reals r: Rational(r) ↔

 Integer(i)  Integer(j): r = i / j.
–  reals r: Irrational(r) ↔ ¬Rational(r)

• You almost always need the definitions of
the terms in order to prove the theorem!

• Next, let’s go through one valid proof:

§ 1.7 – Proof Methods

124

Chapter 1

(c)2001-2003, Michael P. Frank

What you might write

• Theorem:
x, y: Rational(x)  Irrational(y) → Irrational(x + y)

• Proof: Let x, y be any rational and irrational
numbers, respectively. … (universal generalization)

• Now, just from this, what do we know about x and y? You
should think back to the definition of rational:

• … Since x is rational, we know (from the very
definition of rational) that there must be some
integers i and j such that x = i / j. So, let ix , jx be
such integers …

• We give them unique names so we can refer to them later.

§ 1.7 – Proof Methods

125

Chapter 1

(c)2001-2003, Michael P. Frank

What next?

• What do we know about y? Only that y is
irrational: ¬ integers i, j : y = i / j.

• But, it’s difficult to see how to use a direct proof
in this case. We could try indirect proof also, but
in this case, it is a little simpler to just use proof
by contradiction (very similar to indirect).

• So, what are we trying to show? Just that x+y is
irrational. That is, ¬i, j : (x + y) = i / j.

• What happens if we hypothesize the negation of
this statement?

§ 1.7 – Proof Methods

126

Chapter 1

(c)2001-2003, Michael P. Frank

More writing…

• Suppose that x + y were not irrational.
Then x + y would be rational, so  integers
i, j : x + y = i / j. So, let is and js be any such
integers where x + y = is / js .

• Now, with all these things named, we can start
seeing what happens when we put them together.

• So, we have that (ix / jx) + y = (is / js).
• Observe! We have enough information now that

we can conclude something useful about y, by
solving this equation for it.

§ 1.7 – Proof Methods

127

Chapter 1

(c)2001-2003, Michael P. Frank

Finishing the proof.

• Solving that equation for y, we have:
y =

=
Now, since the numerator and denominator
of this expression are both integers, y is
(by definition) rational. This contradicts
the assumption that y was irrational.
Therefore, our hypothesis that x + y is
rational must be false, and so the theorem
is proved.

§ 1.7 – Proof Methods

128

Chapter 1

(c)2001-2003, Michael P. Frank

Example wrong answer

• 1 is rational. is irrational. is
irrational. Therefore, the sum of a
rational number and an irrational number is
irrational. (Direct proof.)

• Why does this answer merit no credit?
– The student attempted to use an example to prove a

universal statement. This is always wrong!
– Even as an example, it’s incomplete, because the

student never even proved that is irrational!

§ 1.7 – Proof Methods

2 21

21

129

Chapter 1

(c)2001-2003, Michael P. Frank

Proofs of Equivalence

• How to prove “pq”, i.e., “ p if and only if
q”?
– You must prove “pq” and “q  p”

• How to prove that p1, p2, p3 , …, pn are
equivalent, i.e., p1  p2  p3 …  pn?
– You only need to prove “p1  p2”  “p2  p3”
 “p3  p4” …  “pn-1  pn”  “pn  p1”!

§ 1.7 – Proof Methods

130

Chapter 1

(c)2001-2003, Michael P. Frank

Uniqueness Proofs

• Existence: show that an element x with
the desired property exists.

• Uniqueness: show that if y  x, then y
does not have the desired property, or
if x, y both have the desired property,
then y = x.

§ 1.7 – Proof Methods

